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Abstract— Conventional active learning dynamically con-
structs the training set only along the sample dimension.
While this is the right strategy in binary classification, it
is sub-optimal for multi-label image classification. We argue
that for each selected sample, only some effective labels need
to be annotated while others can be inferred by exploring
the label correlations. The reason is the contributions of
different labels to minimizing the classification error are
different due to the inherent label correlations. To this end,
we propose to select sample-label pairs, rather than only
samples, to minimize a multi-label Bayesian classification
error bound. We call it two-dimensional active learning
because it considers both the sample dimension and the label
dimension. Furthermore because the number of training sam-
ples is increasing rapidly over time due to active learning,
it becomes intractable for the offline learner to retrain a
new model on the whole training set. So we develop an
efficient online learner to adapt the existing model with the
new one by minimizing their model distance under a set
of multi-label constraints. The effectiveness and efficiency
of the proposed method are evaluated on two benchmark
datasets and a realistic image collection from a real-world
image sharing website - Corbis.

Index Terms— Active learning, online adaption, multi-label
classification, image annotation.

I. INTRODUCTION

THe goal of image classification is to assign a set of
labels to images based on their semantic content. In

most existing approaches, image classification has been
formulated as either multi-class or multi-label problem. As
multi-class problem, each image can be labeled by one and
only one class. An example under such a classification set-
ting is the Caltech 101 [1] annotation, in which each image
in this data set is classified as only one object category.
However in most real-world problems, multiple labels can
be assigned to an image. For example, in many online image
sharing websites (e.g., Flickr, Picasa, and Yahoo! Gallery),
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most of the images have more than one tags manually
labeled by users. This classification setting results in a
multi-label problem which is more complex and challenging
compared to multi-class problem. In this paper, we will
focus on image classification under this multi-label setting.
Specifically, we will use active learning as the tool, and
extend it from a one-dimensional sample-centric approach
to a two-dimensional joint sample-label-centric approach
for multi-label image classification. We further propose
an online multi-label classification algorithm which can
incrementally updates the classification model once new
image samples are selected by the proposed active learning
strategy. Such an online algorithm can avoid retraining the
multi-label model so that it is computationally efficient to
adapt the classifier to capture the semantic changes of the
online image content.

In traditional classification scenarios [2] [3] [4], a batch
of training images are first statically annotated by a set
of semantic labels, and then they are used to train a
classifier. However, in many online applications (e.g., the
image sharing websites) users can dynamically upload new
images, which have significant difference from the existing
image collections due to the changes of the user-focuses
and semantic “concept drift” in the low-level feature space.
Moreover, these images can often be annotated by mul-
tiple labels simultaneously and it poses more challenges
to handle these multi-label image sets. To deal with this
online setting, traditional approaches are restricted by the
following two problems:

• To adapt the existing classifier to the “concept” drift
over time, we must manually collect the multi-label
ground truth from the newly-acquired images. As well
known, it is labor intensive and subject to annotation
errors, especially when these image sets are large and
need to annotate multiple labels for each image. In
most cases, it is unnecessary to completely label all the
new images and all their associated labels due to the
fact that there exist redundancies between the different
images. Therefore, we can design a strategy to utilize
these redundancies to improve adaptation efficiency
of the online models with only a small number of
elaborately-selected samples.

• Once a set of images are collected together with their
labeling ground truth, a direct solution to obtaining a
new classifier is to retrain the classification model with
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all the historical training set plus the newly-acquired
images. However, the intensive computational cost has
restricted many sophisticated models to be retrained
in practice. So an efficient algorithm is desired to
incrementally adapt the image models with the new
images.

To handle the above issues, we propose an online two-
dimensional active learning algorithm for multi-label image
classification together with an efficient online adaptation
model.

Active learning is one of the most widely-used ap-
proaches in image classification, as it can significantly re-
duce the effort in labeling training samples [5] [6] [7] [8].
Specifically, active learning approaches iteratively annotate
a set of elaborately selected samples so that the expected
classification error is minimized in each iteration. As a
result, the total number of training samples that need to be
labeled is smaller than non active learning approaches. The
core of any active learning approach is the sample selection
strategy. In the past decade, a number of active learning ap-
proaches were developed using different sample selection
strategies [9] [10] [6]. For example, [11] [2] have explored
reduction in uncertainty as the sample selection criterion
and competitive performances have been achieved. Most
of these approaches focus on the binary classification. How-
ever, in many real-world applications [12] [13] [3], a sample
is usually associated with multiple labels rather than a
single one. Under such a multi-label setting, each sample
will be annotated as either “positive” or “negative” for each
and every label. As a result, active learning with multi-label
samples is much more challenging than that with binary-
label ones, especially when the number of labels is large.

A direct way to tackle active learning under multi-label
setting is to translate it into a set of binary problems, i.e.,
each category/label is independently handled by a binary
active learning algorithm. For example, in [12] [14] two
research groups have proposed such a binary-based active
learning algorithm for multi-label classification problem,
respectively. However, these approaches do not take into
account the inherent relationship among multiple labels.
In this paper, we propose a novel active learning strategy
which iteratively selects sample-label pairs to minimize the
expected classification error. Specifically, in each iteration,
human annotators are only required to annotate/confirm
a selected part of labels of selected samples while the
remaining unlabeled part can be inferred according to
the label correlations. We call this strategy 2 Dimensional
Active Learning (2DAL) because it considers not only the
samples to be labeled along the sample dimension but
also the labels associated with these samples along the
label dimension. An intuitive explanation of this strategy
is that there exist both sample and label redundancies for
multi-label samples. Therefore, annotating a set of selected
sample-label pairs provides enough information for train-
ing the classifiers since the information in these pairs can be
propagated to the rest along both the sample “dimension”
and the label “dimension”. Such a strategy significantly
can reduce the required human labor. For example, “field”
and “mountain” tend to occur simultaneously in an image.
Therefore, it is reasonable to select only one label (e.g.,

“mountain”) for annotation since the uncertainty of the
other label can be remarkably decreased after annotating
this one. Another example is “mountain” and “urban”. In
contrast to “field” and “mountain”, these two labels often
do not occur simultaneously. Thus, annotating one of them
will probably eliminate the existence of the other one.

For the online applications, the second important issue is
about an efficient online model-adaptation algorithm. With
more and more new sample-label pairs are added into train-
ing set during the 2DAL procedure, the multi-label model
must be updated accordingly. The most straightforward
approach is to retrain the model on the whole training set.
However, such an offline approach will become impractical
when more and more samples come into the training set
over time. On the other hand, as the semantic meanings
of the image concepts are keeping changing due to the
evolution of user focuses (e.g., users are keeping changing
their attentions due to the evolution of the fashion and
news) and photography techniques (e.g., film photography
ten years before versus digital photographing today), a bal-
ance scheme should be incorporated into model adaptation
algorithm so that it can trade off between the old knowledge
preserved in the existing model and the new information
contained in newly-acquired images. Thus, retraining the
model with all old and new samples equally-weighted in
a batch-mode manner is not a proper scheme, especially
when the number of the new samples are much smaller
than the number of the old ones. It probably underestimates
the effect of new images.

In contrast to the naive retraining approach, we propose
a novel online adaptation algorithm for multi-label image
classification. It can directly update the existing model
with the new samples rather than with the whole training
images. Thus, it is much more efficient for model adaptation
during the 2DAL procedure than the traditional retraining
approach. Furthermore instead of equally using the old and
new samples, this adaptation algorithm balances between
preserving the old knowledge and complying with the
new information. It can better leverage the new samples
to capture evolution of concept semantics over time in
many online applications. In particular, we formulate such
an online adaptation algorithm by optimizing a variational
problem which minimizes the distance between the new
and old models under a set of multi-label constraints.
Compared to the widely-used fully Bayesian approach [1]
that requires to construct a set of intractable conjugate
distributions, the model can be efficiently updated.

In brief, we summarize our contributions in this paper:

• We propose a novel two-dimensional active learning
strategy for multi-label image classification. It actively
selects sample-label pairs to minimize the expected
Bayesian classification error bound. This strategy uti-
lizes the rich label correlations so that the entire anno-
tation labor can be dramatically reduced.

• In each active learning iteration, an efficient online
adaptation algorithm is developed to update the multi-
label model without the need of retraining with all
historical training samples. It can also balance between
the knowledge preserved in the old model and the
information contained in newly-acquired samples, as
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Fig. 1. The proposed two-dimension active learning (2DAL) strategy

well as capture the semantic evolution of the image
concept.

II. TWO DIMENSIONAL ACTIVE LEARNING
STRATEGY

In this section, we detail the underlying idea of the
proposed 2DAL strategy in multi-label setting.

A. Description of 2DAL Framework
Figure 1 illustrates the proposed 2DAL strategy. Different

from the typical binary active learning formulation that
selects the most informative samples for annotation, we
jointly select both the samples and labels simultaneously.
The underlying assumption is annotating a portion of well-
selected labels provides sufficient information for learning
the classifier. As shown in Figure 1, this strategy trades off
between the annotation labor and the learning performance
along two dimensions, i.e., the sample and label dimen-
sions. In contrast, traditional active learning algorithms
can be seen as a one-dimension active selection approach
along only sample dimension. More specifically, along label
dimension all of the labels correlatively interact. Therefore,
once labels are partially annotated, the remaining unlabeled
concepts can be inferred based on label correlations. Theo-
retically, the label correlations have a connection with the
expected Bayesian Error Bound (see the following lemma
and theorem in section II-B), and thus these label correla-
tions can help to reduce the prediction errors in the testing
set during the active learning procedure. This approach
saves much labor compared to fully annotating multiple
labels especially when the number of labels is huge.

It is worth noting that as illustrated in Figure 1, during
2DAL process, samples may have incomplete labels since
the set is only partially labeled. This is different from
traditional active learning algorithm. In the Section IV-B,
we will address how to learn the classification model from
incomplete labels.

B. Multi-label Bayesian error bound
2DAL learner requests annotations on the basis of

sample-label pairs which, once incorporated into the train-
ing set, are expected to result in the lowest classification

error. Here we will first derive a multi-label Bayesian Error
Bound when a sample-label pair is selected under multi-
label setting. 2DAL will iteratively select the ones to mini-
mize this bound.

We begin by defining some notations. For each sam-
ple x, it has m labels yi(1 ≤ i ≤ m) each of which
indicates whether its corresponding concept occurs. As
stated before, in each 2DAL iteration, some of these
labels have already been annotated while others not.
Let U(x) , {i|(x, yi) is unlabeled sample-label pair.} de-
note the set of indices of unlabeled part and L(x) ,
{i|(x, yi) is labeled sample-label pair.} denote the labeled
part for x. Note that L(x) can be an empty set ∅, which
indicates that no label has been annotated for x. Let P (y|x)

be the conditional distribution over samples, where y =

{0, 1}m is the complete label vector and P (x) be the sample
distribution.

First, we establish a Bayesian error bound for classifying
one unlabeled yi once ys is selected for annotating. This
error bound originates from the equivocation bound given
in [15], and we extend it to multi-label setting so it can
handle sample-label pairs.

Lemma 1: Consider a sample x and its index set of labeled
part U(x) and unlabeled part L(x). Once an unlabeled ys

is selected to request annotation (but not yet know its
label), the Bayesian classification error E

(
yi|ys, yL(x), x

)
for

an unlabeled yi, i ∈ U(x) is bounded as

1
2H

(
yi|ys; yL(x), x

)
− ε ≤ E

(
yi|ys; yL(x), x

)

≤ 1
2H

(
yi|ys; yL(x), x

) (1)

where

H
(
yi|ys; yL(x), x

)
=

∑
t,r∈{0,1}

{−P
(
yi = t, ys = r|yL(x), x

)

× log P
(
yi = t|ys = r; yL(x), x

)
}

is the conditional entropy of yi given the selected part ys (
both yi and ys are random variables because they have not
been labeled) and the known labeled part yL(x); ε = 1

2 log 5
4

is a constant.
This lemma will be proven in the appendix I.

Remark 1: It is worthy of noting that this bound is irrel-
evant to the true label of the selected ys. In fact, before
the annotator gives the label of ys, the true value of ys is
unknown. However, no matter what ys holds, 1 or 0, this
bound always holds.

Based on this lemma, we can obtain the following theo-
rem which bounds the multi-label error:

Theorem 1: (Multi-label Bayesian classification error
bound) Under the condition of lemma 1, the Bayesian
classification error bound E(y|ys; yL(x), x) for sample x is

E
(

y|ys; yL(x), x
)

, 1
m

∑m
i=1 E

(
yi|ys; yL(x), x

)

≤ 1
2m

∑m
i=1

{
H

(
yi|yL(x), x

)
−MI

(
yi; ys|yL(x), x

)} (2)

where MI(yi; ys|yL(x), x) is the mutual information between
the random variables yi and ys given the known labeled
part yL(x).
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Proof:

E
(

y|ys; yL(x), x
)

(1)
= 1

m

∑m
i=1 E

(
yi|ys; yL(x), x

)

(2)
≤ 1

2m

∑m
i=1 H

(
yi|ys; yL(x), x

)

(3)
= 1

2m

∑m
i=1

{
H

(
yi|yL(x), x

)
−MI

(
yi; ys|yL(x), x

)}

(3)

where (1) is the definition of multi-label classification er-
ror, (2) directly follows Lemma 1, and (3) makes use of
the relationship between mutual information and entropy:
MI(X; Y ) = H(X)−H(X|Y ).

With the above theorem, we will derive the 2DAL selection
strategy in the following subsection.

C. Pool-base Two-Dimensional Multi-Label Active Learning

We are concerned with pool-based active learning, i.e., a
large pool P is available to the learner sampled from
P (x) and then the proposed 2DAL elaborately selects the
sample-label pairs from this pool to reduce the expected
classification error. We first write the expected Bayesian
classification error over all samples in P before selecting
a sample-label pair (xs, ys)

Eb (P) =
1

|P|
∑

x∈P E
(

y|yL(x), x
)

(4)

We can use the above classification error on the pool to
estimate the expected error over the full distribution P (x),
i.e., EP (x)E

(
y|yL(x), x

)
=

∫
P (x)E

(
y|yL(x), x

)
dx, because the

pool not only provides a finite set of samples but also
an estimation of P (x). After selecting the pair (xs, ys), the
expected Bayesian classification error over the pool P is

Ea (P)

= 1
|P|

{
E

(
y|ys; yL(xs), xs

)
+

∑
x∈P\xs

E
(

y|yL(x), x
)}

= 1
|P|{E

(
y|ys; yL(xs), xs

)
− E

(
y|yL(xs), xs

)

+
∑

x∈P E
(

y|yL(x), x
)
}

(5)

Therefore, the reduction of the expected Bayesian classifi-
cation after selecting (xs, ys) over the whole pool P is

∆E (P) = Eb (P)− Ea (P) (6)

Our goal is to select (x?
s , y?

s ) to maximize the above expected
error reduction. That is,

(x?
s , y?

s ) = arg maxxs∈P,ys∈U(xs) ∆E (P)

= arg minxs∈P,ys∈U(xs)−∆E (P)
(7)

Applying Lemma 1 and Theorem 1, we have

−∆E (P) = Ea (P)− Eb (P)
(1)
= 1

|P|{E
(

y|ys; yL(xs), xs

)
− E

(
y|yL(xs), xs

)

+
∑

x∈P E
(

y|yL(x), x
)
} − 1

|P|
∑

x∈P E
(

y|yL(x), x
)

= 1
|P|

{
E

(
y|ys; yL(xs), xs

)
− E

(
y|yL(xs), xs

)}

(2)
≤ 1

|P|{ 1
2m

∑m
i=1 H

(
yi|yL(xs), xs

)

− 1
2m

∑m
i=1 MI

(
yi; ys|yL(xs), xs

)

− 1
m

∑m
i=1 E

(
yi|yL(xs), xs

)
}

(3)
≤ 1

|P|{ 1
2m

∑m
i=1 H

(
yi|yL(xs), xs

)

− 1
2m

∑m
i=1 MI

(
yi; ys|yL(xs), xs

)

− 1
m

∑m
i=1

(
1
2H

(
yi|yL(xs), xs

)
− ε

)
}

= 1
|P|

{
ε− 1

2m

∑m
i=1 MI

(
yi; ys|yL(xs), xs

)}

(8)

The equality (1) comes from Eqn. (4) (5). The first inequality
(2) follows the Theorem 1 and the second inequality (3)

comes from the lower bound of Lemma 1.
Consequently, by minimizing the obtained Bayesian error

bound (8), we can select the sample-label pair for annotation
as

(x?
s , y?

s )

= arg min
xs∈P,ys∈U(xs)

1
|P|

{
ε− 1

2m

m∑
i=1

MI
(
yi; ys|yL(xs), xs

)}

= arg max
xs∈P,ys∈U(xs)

∑m
i=1 MI

(
yi; ys|yL(xs), xs

) (9)

D. Further Discussions
1 As discussed in section II-A, the proposed 2DAL

approach is an active learning algorithm along
two dimensions, which reduces not only sample
uncertainty but also label uncertainty. The above
selection strategy Eqn. (9) well reflects these two
targets. The last term in Eqn. (9) can be rewritten
as
∑m

i=1 MI
(
yi; ys|yL(xs), xs

)

= MI
(
ys; ys|yL(xs), xs

)
+

m∑
i=1,i 6=s

MI
(
yi; ys|yL(xs), xs

)

= H
(
ys|yL(xs), xs

)
+

m∑
i=1,i 6=s

MI
(
yi; ys|yL(xs), xs

)

(10)
As we can see, the objective selection func-
tion for 2DAL has been divided into two parts:

H
(
ys|yL(xs), xs

)
and

m∑
i=1,i 6=s

MI
(
yi; ys|yL(xs), xs

)
.

The former entropy measures the uncertainty of
the selected pair (x?

s , y?
s ) itself, which is consistent

with the typical one dimensional active learning
algorithm, i.e., to select the most “informative”
(uncertain) samples near the classification bound-
ary [16] [2] [17]. On the other hand, the latter
mutual information terms measure the statistical
redundancy among the selected label and the rest
ones. By maximizing these mutual information
terms, 2DAL provides maximum information to
reduce the uncertainty of the other labels. This
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2DAL strategy complies with our motivation of
selecting sample-label pairs reducing the uncer-
tainties along both sample and label dimensions.
Note that when there is only one label associated
with each sample, the selection criterion of Eqn.
(10) reduces to H(ys|xs) which is the same as
the traditional binary-based criterion, i.e., to select
the most uncertain sample for annotation [17] [9].
Thus the traditional binary-based active learning
can be seen as a special case of the 2DAL strategy
with a single label.

2 It is worthy of indicating that the posterior
P (y|x) needs to capture the label correlations
in the proposed 2DAL strategy. If we as-
sume the independence among the different la-
bels, i.e., P (y|x) =

∏m
i=1 P (yi|x), the corre-

sponding mutual information terms will become
MI

(
yi; ys|yL(xs), xs

)
= 0, i 6= s. In this case,

the selection criterion reduces to (x?
s , y?

s ) =

arg maxxs∈P,ys∈U(xs) H
(
ys|yL(xs), xs

)
, i.e., to se-

lect the most uncertain sample-label pair. Such a
criterion neglects the label correlations and would
become less efficient to reduce label uncertainty.
Therefore, a statistical method that models the
label correlations is required in this case. We will
develop an efficient Bayesian model in the follow-
ing section.

3 When computing the mutual information terms in
Eqn. (9), we need the distribution P (y|x). How-
ever, the true distribution is unknown, but we can
estimate it using the current learner. As stated in
[18], such an approximation is reasonable because
the most useful labeling is usually consistent with
the learner’s prior belief over the majority (but not
all) of the unlabeled pairs.

III. MULTI-LABEL ONLINE LEARNER
Once new sample-label pairs are selected according to

the 2DAL strategy, the statistical model for multi-label
images should be updated accordingly. However, as stated
in Section I, the conventional offline algorithms retrain a
new model on the whole historically-collected training set
plus the new samples. It will become intractable when
hundreds of thousands of samples are accumulated into
the training set over time. Therefore, an efficient online
adaptation algorithm is desired to adapt the old model to
the new sample without retraining it. Intuitively, such an
online classification algorithm should satisfy the following
requirements:
• It ought to preserve the old knowledge that has already

existed in the old model. This knowledge stores the rich
historical information about the previously-acquired
training samples;

• It can reveal the information contained in the newly-
arrived multi-label samples. In contrast to the tra-
ditional binary-based algorithm (e.g., one-against-rest
SVM), the label correlations must be modeled in this
online learner.

In this section, we will present such an online learning
algorithm that satisfies the above two requirements. We

begin our discussion with the definition of some notations
and the online setting. Under the online setting, we are
given an existing old multi-label model P τ (y|x), which is
trained from the historically-acquired images. Then a set
of new images and their corresponding labels {xi, yi}n

i=1 is
obtained in each 2DAL iteration. Each xi ∈ Rd is the feature
vector and yi ∈ {0, 1}m is a m-dimensional label vector, in
which m is the number of image labels and each element
in yi indicates the membership for the corresponding label.
Our goal is to learn a new model P τ+1(y|x) based on the
existing model P τ (y|x) and {xi, yi}n

i=1. In contrast to the
retraining-based learning algorithm, the online learner does
not utilize the historical training set but only the current
new coming samples. It assumes the information about the
historical training samples has been preserved in the old
model P τ (y|x), which is learned from these old samples.
Thus with much fewer of only new coming samples, the
online learner can train a new model efficiently.

As aforementioned, this new model P τ+1(y|x) ought
to satisfy the two requirements: preserving the existing
knowledge in P τ (y|x) while revealing the information in
new samples {xi, yi}n

i=1. These two requirements can be
satisfied by formulating the following probabilistic varia-
tional problem. In this paper, we use the Kullback-Leibler
Divergence (KLD) [19] to measure the degree of the new
model preserving the existing knowledge contained in the
old one, under a set of multi-label constraints revealing the
information contained in the new samples:

P̂ τ+1(y|x) = arg min
P τ+1

〈
DKL

(
P τ+1(y|x)||P τ (y|x)

)〉
P̃ (x)

(11)

s.t. 〈yi〉P τ+1(x,y) = 〈yi〉P̃ (x,y) + ηi, 1 ≤ i ≤ m (12)
〈
yiyj

〉
P τ+1(x,y) =

〈
yiyj

〉
P̃ (x,y) + θij , 1 ≤ i < j ≤ m (13)

〈yixl〉P τ+1(x,y) = 〈yixl〉P̃ (x,y) + φil, 1 ≤ i ≤ m, 1 ≤ l ≤ d(14)
∑

y
P τ+1(y|x) = 1 (15)

where
〈
DKL

(
P τ+1(y|x)||P τ (y|x)

)〉
P̃ (x)

is the KLD be-

tween the new model P τ+1(y|x) and the old one P τ (y|x)

over the sample frequency P̃ (x) = 1
m

∑m
i=1 δ(x − xi) taken

from {xi}n
i=1 where δ(·) is the indicator function. Thus we

have
〈
DKL

(
P τ+1(y|x)||P τ (y|x)

)〉
P̃ (x)

=
∑

x
P̃ (x)DKL

(
P τ+1(y|x)||P τ (y|x)

)

=

n∑

i=1

DKL

(
P τ+1(y|xi)||P τ (y|xi)

)
(16)

〈·〉P τ+1(x,y) and 〈·〉
P̃ (x,y) in Eqn. (12) ∼ (14) denote the

expectation w.r.t. model distribution P τ+1(x, y) and em-
pirical distribution P̃ (x, y) = 1

m

∑m
i=1 δ(x − xi) · δ(y − yi)

on the training samples {xi, yi}n
i=1, respectively. yi, yj and

xl in these 〈·〉 represent the ith and jth elements in label
vectors y and lth element in feature vectors x, respec-
tively. It is worth noting that the joint model distribution
P τ+1(x, y) = P τ+1(y|x)P̃ (x), i.e., we only care about the
conditional distribution P τ+1(y|x) and thus use the sample
frequency P̃ (x) on the training samples to approximate the
true sample distribution P τ+1(x). Constraints (12) ∼ (14)
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restrict the new model to comply with the statistics on
the new samples. It is similar to the conventional offline
model used in the previous work [20] [4]. ηi ∼ N(0, σ2

η),
θij ∼ N(0, σ2

θ) and φil ∼ N(0, σ2
φ) are the estimation errors

following the Gaussian distribution which serve to smooth
P τ+1(y|x) to improve the model’s generalization ability.
These estimation error distributions can be due to the
noise in the training samples. Note that we do not assume
any specific probabilistic form of P τ+1(y|x) and P τ (y|x).
Therefore, the objective function is minimized by exploring
all possible input functions instead of some parameterized
functions like in the conventional optimization problem.
This type of optimization objective is called variational op-
timization (see more detail about variational optimization
in [21]). With no assumption of any specific probabilistic
form, the variational optimization problem can search in a
much larger functional space to find a more optimal one.

The above objective function (16) has a rather intuitive
explanation. From the perspective of the information theory
[19], the KLD measures the distance between two differ-
ent distributions. Thus by minimizing the KLD between
P τ+1(y|x) and P τ (y|x), the new model P τ+1(y|x) can pre-
serve the old knowledge in the existing model P τ (y|x) as
much as possible. This is consistent with the first require-
ment above. On the other hand, in the multi-label con-
straints (12) (13) (14), we force the new model P τ+1(y|x) to
comply with three statistics on the new samples {xi, yi}n

i=1.
It satisfies the second requirement that the new model
must comply with the information contained in the new
samples. It is worth noting that by modeling the label
correlations in Eqn. (13), the obtained model reveals the
underlying correlations between different labels. Finally, the
constraint (15) just serves to normalize P τ+1(y|x). Figure 2
illustrates the geometry explanation of this online learner.
Here D denotes a space in which each point is a potential
conditional distributions P (y|x) for the new model. This
space is equipped with KLD as its distance metric. All the
distributions satisfying the multi-label constraints constitute
a sub-manifold H embedded in D. Therefore, the above
optimization problem equals to find an optimal new model
P τ+1(y|x) in H with the minimum distance from the old
model P τ (y|x). Equivalently, from the Geometrical prospec-
tive, the optimal solution P τ+1(y|x) to this problem is a
projection of the old model P τ (y|x) to the sub-manifold H.

As stated in Section I, when learning the new model we
should balance between the existing knowledge and the
new information. The Gaussian error estimations in (12)
(13) (14) serve to provide such a trading-off scheme. When
the variances of Gaussian errors ηi, θij and φil are larger,
the new model P τ+1(y|x) will be biased to be the existing
model P τ (y|x) since the multi-label constraints become
more relaxed with relatively large noises ηi, θij and φil in
the current training set. In contrast, the small variances will
make P τ+1(y|x) bias on the new information in {xi, yi}n

i=1.
Extremely, the removal of these error estimations will lead
to a new model that completely comply with the new
information. Furthermore, as to been derived later, these
Gaussian errors will introduce a regularizer term in the
dual form of this formulation. As suggested in [22] [4], they
assume the joint probability of estimation errors should

Old model

Optimal new model 1Pτ +

Pτ

Other candidate model 'P

H

Sub-manifold satisfying the 

multi-label constraints

Distance metric

DDistribution space

( )1 ||KL
P

D P Pτ τ+
�

Fig. 2. A Geometry explanation of the proposed online learner. D is
a space of all potential distributions for the new model. It is equipped
with KLD as its distance metric. All the distributions satisfying the
multi-label constraints constitute a sub-manifold H. The optimal new
model P τ+1(y|x) can be seen as the projection of the old model
P τ (y|x) to the sub-manifold H. In this figure, P τ+1 is the optimal
new model and we can see its distance to the old model is less than
that of any other candidate models P ′ in the sub-manifold H.

be reasonably large, e.g., P (ηi, θij , φil|1 ≤ i < j ≤ m, 1 ≤
l ≤ d) ≥ ε. Substitute ηi ∼ N(0, σ2

η) = 1√
2πση

exp{− η2
i

2σ2
η
},

θij ∼ N(0, σ2
θ) = 1√

2πσθ
exp{− θ2

ij

2σ2
θ

} and φil ∼ N(0, σ2
φ) =

1√
2πσφ

exp{− φ2
il

2σ2
φ

} into this inequality and assume these
estimate errors are independent to each other, we have

∑

i

η2
i

2σ2
η

/
n

+
∑

i<j

θ2
ij

2σ2
θ

/
n

+
∑

i,l

φ2
il

2σ2
φ

/
n
≤ C (17)

Before moving further, we briefly discuss how the above
online formulation tackles “concept drift” over time men-
tioned in section I. There already exist literatures working
on this “concept drift” problem [16] [23]. From statistical
perspective, “concept drift” can be modeled as the change
of empirical distribution of the samples and the labels (i.e.,
the joint distribution of the samples and the labels) over
time [16]. As indicated by Eqn. (12) ∼ (14), the proposed on-
line model adapts to the new empirical distribution P̃ (x, y)

by complying with the first and second order statistics of
P̃ (x, y). Through such a model adaptation, “concept drift”
can be automatically captured by this online adaptation
model.

Combining the formulations (16) ∼ (15) and (17), accord-
ing to Karush-Kuhn-Tucker (KKT) conditions P τ+1(y|x) can
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be solved by maximizing the dual Lagrange function

L
(
P τ+1(y|x), η, θ, φ, b, R, W, γ, ς

)

=
〈
DKL

(
P τ+1(y|x)||P τ (y|x)

)〉
P̃ (x)

+
∑
i

bi

(
〈yi〉P̃ (x,y) + ηi − 〈yi〉P τ+1(x,y)

)

+
∑
i<j

Rij

(〈
yiyj

〉
P̃ (x,y) + θij −

〈
yiyj

〉
P τ+1(x,y)

)

+
∑
i,l

Wil

(
〈yixl〉P̃ (x,y) + φil − 〈yixl〉P τ+1(x,y)

)

+γ

(
∑
i

η2
i

2σ2
η/n

+
∑
i<j

θ2
ij

2σ2
θ/n

+
∑
i,l

φ2
ij

2σ2
φ/n

− C

)

+
∑

x ς(x)
(
1−∑

y P τ+1(y|x)
)

(18)

where b, R, W, γ, ς are Lagrangian multipliers, in which b =

[b1, b2, · · · , bm]T is a m × 1 column vector, R = [Rij ]m×m

is a strict upper matrix with Rij = 0 for i ≥ j, and
W = [Wij ]m×d is a m × d matrix. The above function can
be maximized by taking its derivatives and setting them to
zero. Specifically, the derivative of KLD w.r.t. P τ+1(y|x) is

∂〈DKL(P τ+1(y|x)||P τ (y|x))〉
P̃ (x)

∂P τ+1(y|x)
= ∂

∂P τ+1(y|x)
∑

ν P̃ (ν)
∑
h

P τ+1(h|ν) log
P τ+1(h|ν)
P τ (h|ν)

= ∂
∂P τ+1(y|x)

∑
ν P̃ (ν)

∑
h

P τ+1(h|ν) log P τ+1(h|ν)

− ∂
∂P τ+1(y|x)

∑
ν P̃ (ν)

∑
h

P τ+1(h|ν) log P τ (h|ν)

= P̃ (x)
{

log P τ+1(y|x) + 1− log P τ (y|x)
}

(19)

Thus the derivative of L
(
P τ+1(y|x), η, θ, φ, b, R, W, γ, ς

)

w.r.t. P τ+1(y|x) is

∂L
∂P τ+1(y|x)
= P̃ (x){log P τ+1(y|x) + 1− log P τ (y|x)

−yT (b + Ry + Wx)} − ς(x)

(20)

It is easy to compute the derivatives of Lagrange w.r.t. other
parameters ηi, θij and φil:

∂L
∂ηi

= bi + nγ ηi

σ2
η
; ∂L

∂θij
= Rij + nγ

θij

σ2
θ

; ∂L
∂φil

= Wil + nγ φil

σ2
φ

.

(21)
Setting the above derivatives (20) ∼ (21) of Lagrange to
be zero, we can find when γ is zero, b, R and W are also
reduced to be the trivial solution zero. Thus we can assume
γ > 0, and we obtain

P τ+1(y|x) ∝ P τ (y|x) exp
{

yT (b + Ry + Wx)
}

(22)

Considering the normalization condition (15), we can get

P τ+1(y|x) =
1

Zτ+1(x)
P τ (y|x) exp

{
yT (b + Ry + Wx)

}
(23)

ηi = −σ2
η

nγ
bi, θij = − σ2

θ

nγ
Rij , φil = −σ2

φ

nγ
Wil (24)

where

Zτ+1(x) =
∑

y
P τ (y|x) exp

{
yT (b + Ry + Wx)

}
(25)

is the partition function. Now, let us recompute the KLD
between P τ+1(y|x) and P τ (y|x) in Eqn. (16) considering (23)

〈
DKL

(
P τ+1(y|x)||P τ (y|x)

)〉
P̃ (x)

=
∑
x,y

P̃ (x)P τ+1(y|x) log
P τ+1(y|x)
P τ (y|x)

=
∑
x,y

P̃ (x)P τ+1(y|x) log
exp{yT (b+Ry+Wx)}

Zτ+1(x)

=
∑
x,y

P̃ (x)P τ+1(y|x)
{

yT (b + Ry + Wx)
}

−∑
x

P̃ (x) log Zτ+1(x)

=
∑
i

bi 〈yi〉P τ+1(x,y) +
∑
i<j

Rij

〈
yiyj

〉
P τ+1(x,y)

+
∑
i,l

Wil 〈yixl〉P τ+1(x,y) −
〈
log Zτ+1(x)

〉
P̃ (x)

(26)

Substitute the above equation and (24) into Eqn. (18), we
can obtain the Lagrangian Function and the corresponding
dual optimization problem to solve the parameters b, R, W

b?, R?, W? = arg max
b,R,W

L (b, R, W)

arg max
b,R,W

〈
yT (b + Ry + Wx)− log Zτ+1(x)

〉
P̃ (x,y)

−αb
2n ||b||22 − αR

2n ||R||2F − αW
2n ||W||2F

= arg max
b,R,W

n∑
i=1

{
yT

i

(
b + Ryi + Wxi

)− log Zτ+1(xi)
}

−αb
2n ||b||22 − αR

2n ||R||2F − αW
2n ||W||2F

(27)

with
αb = σ2

η

/
γ, αR = σ2

θ

/
γ, αW = σ2

φ

/
γ. (28)

where || · ||2 and || · ||F are norm-2 and Frobenius norm
respectively. Here, −αb

2n ||b||22 − αR
2n ||R||2F − αW

2n ||W||2F serves
as regularization term. Note that in this dual optimization
problem, the old model P τ (y|x) affects the objective func-
tion through the partition function Zτ+1(x) of Eqn. (25).
Moreover, according to the last equality in Eqn. (27) the
summation is only taken over the newly-acquired samples,
instead of all the historically-accumulated training set like
the offline learner. Thus with a rather smaller number of
new samples, the above optimization problem can be solved
much more efficiently for the proposed online learner.

Take the derivatives of L (b, R, W) w.r.t. b, R, W
∂L
∂bi

= 〈yi〉P̃ (x,y) − 〈yi〉P τ+1(x,y) − αb
n bi

∂L
∂Rij

=
〈
yiyj

〉
P̃ (x,y) − 〈yiy〉P τ+1(x,y) − αR

n Rij

∂L
∂Wil

= 〈yixl〉P̃ (x,y) − 〈yixl〉P τ+1(x,y) − αW
n Wil

(29)

Given the above derivatives, we can use the efficient gra-
dient descent methods (such as L-BFGS [24]) to maximize
(27).

Here we would like to have a brief discussion about
the optimization problem (27). By setting the larger vari-
ances σ2

η, σ2
η, σ2

φ, it says there exists considerable noise in
the new samples {xi, yi}n

i=1 (see Eqn. (12), (13), (14)). At
this time, according to the regularization term in (27), the
smaller parameters b, R, W are preferred. Thus, the new
model P τ+1(y|x) will approach to the old one. Conversely,
P τ+1(y|x) will more consider the new samples. So by set-
ting different σ2

η, σ2
η, σ2

φ, we can make balance between old
knowledge in P τ+1(y|x) and new information in {xi, yi}n

i=1.
Such a balance is useful when the semantic meaning of
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image concept is changing over time, as well as the number
of the new training samples is rather smaller than that of
historical training samples (See Section I for detail).

Note that when deriving P τ+1(y|x) in Eqn. (23), we do
not assume any specific probabilistic form of the old model
P τ (y|x). Thus any statistical model can be used as P τ (y|x),
such as logistic regression model and Gaussian process
model. However without loss of generality, we can assume
P τ (y|x) has the following form

P τ (y|x) =
1

Zτ (x)
exp

{
yT (bτ + Rτ y + Wτ x)

}
(30)

where Zτ (x) =
∑

y exp
{

yT (bτ + Rτ y + Wτ x)
}

is the parti-
tion function. Thus, according to Eqn. (23), the new model
P τ+1(y|x) is

P τ+1(y|x)

= 1
Zτ+1(x) exp

{
yT (

(bτ + b?) + (Rτ + R?)y + (Wτ + W?)x)
)}

(31)
We can find P τ+1(y|x) has the same probabilistic form like
P τ (y|x) except their parameters have been adapted as

bτ+1← bτ + b?

Rτ+1← Rτ + R? (32)
Wτ+1← Wτ + W?

Therefore, such an online adaptation can then be iterated in
the same manner in each iteration. Here, the initial model
P 0 can be started with the parameters b0 = 0, R0 = 0,
W0 = 0.

To the best of our knowledge, we are the first to develop
an online learner for multi-lable classfication problem, al-
thought there exist some incremental or online learners for
the binary classfication which do not model the correlations
between different labels [25] [26] [27].

IV. IMPLEMENTATION DETAILS

In this section, we discuss some implementation details
about the two dimensional active learning with the pro-
posed online learner.

A. Kernelization
Note that the model in Eqn. (23) is linear and can be

effective on a set of samples that vary linearly. However,
it will fail to capture the structure of the feature space if
the variations among the samples are nonlinear. But image
classification is in this case when one is trying to extract fea-
tures from image categories that vary in their appearance,
illumination conditions and complex background clutters.
Therefore, a nonlinear version is required to classify the
images based on their nonlinear structure in their feature
space.

Here we extend the model in Eqn. (23) to a nonlinear
one so that the powerful kernel method can be adopted.
A transformation ψ maps samples into a target space in
which kernel function k(x′, x) gives the inner product. We
can rewrite Eqn. (23) as

P τ+1(y|x)

= 1
Zτ+1(x)P

τ (y|x) exp
(

yT (b + Ry) + yT ψ(W) · ψ(x)
)

(33)

where ψ(W) is the mapped weighting matrix. According to
the Representer Theorem, the optimal weighting vector of
the single-label problem is a linear combination of samples.
In the proposed multi-label setting, the mapped weighting
matrix ψ(W) can still be written as a linear combination of
ψ(xi) except that the combination coefficients are vectors
instead of scalars, i.e.

ψ(W) =
∑n

i=1 θ(xi)ψ
T (xi)

=
[

θ(x1) θ(x2) · · · θ(xn)
]




ψT (x1)

ψT (x2)
...

ψT (xn)




= Θ ·




ψT (x1)

ψT (x2)
...

ψT (xn)




(34)

where the summation is taken over the samples in the
training set. θ(xi) is a coefficient vector and Θ is a m × n

matrix in which each row is the weighting coefficients for
each label. Accordingly, we have

ψ(W) · ψ(x)

= Θ · [ k(x1, x) · · · k(xn, x)
]T

= Θ · k(x)

(35)

and

P τ+1(y|x)

= 1
Zτ+1(x)P

τ (y|x) exp
(

yT (b + Ry + Θk(x))
) (36)

where k(x) =
[

k(x1, x) · · · k(xn, x)
]T is a n × 1 vec-

tor and it can be seen as a new representation of sam-
ple x. Correspondingly, with the identity ||φ(W)||2F =

tr(φ(W)φ(W)T ) = tr(ΘKΘT ) the Lagrangian function (27)
can be rewritten as

L(b, R, Θ) =
〈

yT (b + Ry + Θ · k(x))− Zτ+1(x)
〉

P̃ (x,y)

−αb
2n ||b||22 − αR

2n ||R||2F − αW
2n tr(ΘKΘT )

(37)
where K = [k(xi, xj)]n×n is the kernel matrix. By maximiz-
ing (37), we can estimate the optimal parameters b?, R?, Θ?

in this kernelization formulation.
Here, we do not assume any specific form of the old

model P τ (y|x). Similar to the discussion in the above
subsection, we can assume P τ (y|x) has the following form

P τ (y|x) = 1
Zτ (x) exp

(
yT (bτ + Rτ y + Θτkτ (x))

)
(38)

Accordingly, the new model P τ+1(y|x) can be

P τ+1(y|x) = 1
Zτ+1(x)

· exp

{
yT

(
(bτ + b?) + (Rτ + R?)y + [Θτ Θ?]

[
kτ (x)

k(x)

])}

(39)
The above new model has the similar probabilistic form as
the old one except the parameters have been adapted as

bτ+1← bτ + b?

Rτ+1← Rτ + R? (40)
Θτ+1← [

Θτ Θ?]



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Approximate Marginals by LBP

E
xa

ct
 M

ar
gi

na
ls

(a) six Labels

0.2 0.3 0.4 0.5 0.6
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Approximate Marginals by LBP
E

xa
ct

 M
ar

gi
na

ls

(b) 14 Labels

Fig. 3. Correlation plots between the exact and approximate marginals
P τ+1(yi|x) and P τ+1(yi, yj |x) for the proposed fully-connected
graphical models with the different number of labels: (a) six labels
and (b) 14 labels.

and the new representation for the sample x is

kτ+1(x) ←
[

kτ (x)

k(x)

]
(41)

With the above equations, we can recursively update the
parameters of the probabilistic model once the new samples
are acquired. As stated in Section I, such an online learning
algorithm can be much more efficient than the traditional
retraining algorithm, especially when the number of the
accumulated samples grows rapidly.

B. Incomplete Labeling

Given the partially labeled training set constructed by
2DAL (see Figure 1), we can handle the incomplete la-
bels by integrating out the unlabeled part yielding the
marginal distribution of the labeled part P τ+1(yL(x)|x) =∑

yU(x)
P τ+1(yU(x), yL(x)|x). But this form will lead to in-

tractable computations and a nonconvex objective function
which results in a local optimum solution. Instead, we use
the Expectation Maximization (EM) algorithm [28] to solve
this incomplete labeling problem. EM algorithm can greatly
reduce the computational cost. As stated in many existing
literatures [29], EM iteratively optimizes a series of local
lower-bounds to the original objective function obtained
by marginalizing over all the unlabeled part. Such local
lower bounds are convex and thus the global optimum
can be found at each M-step for these convex bounds.
These related works prove these local lower-bounds can
approximate the true nonconvex objective function well
enough and thus EM can result in a good solution.
E-Step: Given the current t-th step parameter estimation
bt, Rt, Θt, the T -function (i.e., the expectation of the La-
grangian Eqn. (37) under the current parameters given the
labeled part) can be written as

T (b, R, Θ|bt, Rt, Θt)

=
〈
EU(x)|L(x);bt,Rt,Θt

yT (b + Ry + Θk(x))− Zτ+1(x)
〉

P̃ (x,y)

−αb
2n ||b||22 − αR

2n ||R||2F − αW
2n tr(ΘKΘT )

(42)
where EU(x)|L(x);bt,Rt,Θt

is the expectation operator
given the current estimated conditional probability
P τ+1(yU(x)|yL(x), x; bt, Rt, Θt).

M-Step: Update the parameters by minimizing T -function:

bt+1, Rt+1, Θt+1 = arg max
b,R,Θ

T (b, R, Θ|bt, Rt, Θt) (43)

The derivatives of T -function with respect to its parameters
b, R, Θ is

∂T
∂bi

=
〈
Eyi|L(x);b,R,Θyi

〉
P̃ (x,y)

− 〈yi〉P τ+1(x,y) − αb
n bi,

∂T
∂Rij

=
〈
Eyi,yj |L(x);b,R,Θyiyj

〉
P̃ (x,y)

− 〈
yiyj

〉
P τ+1(x,y) − αR

n Rij

∂T
∂Θil

=
〈
Eyi|L(x);b,R,Θyik(xl, x)

〉
P̃ (x,y)

− 〈yik(xl, x)〉P τ+1(x,y)

−αW
n

∑n
k=1 Θikk(xk, xl)

(44)
Similarly, with the above derivatives, L-BFGS [24] can then
be applied to maximize (43).

C. Efficient Inference

When computing the derivatives (43), we need to com-
pute the marginal distributions of P τ+1(y|x) over the fully-
connected graph on the labels, such as P τ+1(yi|x) and
P τ+1(yi, yj |x). On the other hand, these marginal distri-
butions are also required to compute the mutual informa-
tion used in 2DAL (see Eqn. (9)). It is known that the
computational cost will be intractable with the increment
of the label number m, and this limits the applicability
of the algorithm. Fortunately, there exist many efficient
algorithms to compute these marginals, such as Markov
Chain Monte Carlo (MCMC) [30], Loopy Belief Propagation
(LBP) [31] and Expectation Propagation (EP) [32]. Here,
we adopt the widely-used LBP to compute these marginal
distributions. To apply the LBP, we need to provide the
local evidences and potential functions. From the kernelized
model P τ+1(y|x) in Eqn. (36) we can find its local evidences
as

Ψτ+1(yi) ∝ exp

{
bτ+1
i yi +

n∑

k=1

Θτ+1
ik yik

τ+1(xk, x)

}
(45)

and its potentials

Ψτ+1(yi, yj) ∝ exp
{

Rτ+1
ij yiyj

}
(46)

By propagating the above local evidences and potentials,
LBP can then be used to efficiently compute all the marginal
distributions simultaneously. For detailed LBP algorithm,
please refer to [31].

Murphy et al. [33] have conducted an empirical study and
they find that LBP converges well on a variety of graphical
models. Once LBP converges, the obtained marginals can
give a good approximation to the exact marginals. Similarly,
in order to verify this conclusion on the model repre-
sented by Eqn. (42) and (43), we also conduct an empirical
study to test the convergence of LBP on the two fully-
connected graphical models with six and 14 labels. A set
of test samples from the datasets in following experiment
section VI are used as observations x. Then the posterior
marginals P τ+1(yi|x) and P τ+1(yi, yj |x) are computed by
LBP. Experiments show LBP converges in less than two
iterations over all these test samples and figure 3 illus-
trates the correlation between the exact and approximate
marginals. The results illustrate LBP converges to good
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Fig. 4. The user interface that organizes image annotation by image.
Users annotate all the concepts simultaneously for each image before
proceeding to the next one.

Fig. 5. The user interface that organizes image annotation by concept.
Users annotate all the images exhaustively with a concept before
proceeding to the next one.

approximate marginals w.r.t. the exact one. The absolute
errors between these approximate marginals and the exact
ones are 8.50×10−6 and 1.31×10−5 on average in these two
graphical models, respectively. If the typical LBP does not
converge in some special cases, there also exist methods of
preventing LBP from oscillation. For example, [33] proposes
to use “momentum” by replacing the current messages
with a weighted combination of the current message and
previous ones, which can significantly reduce the chance of
oscillation.

V. USER INTERFACE FOR ANNOTATING IMAGES

An effective User Interface (UI) is a critical factor to
improve the interaction efficiency between human beings
and computers when annotating images. Traditionally, the
image annotation interface is designed to annotate all the
concepts simultaneously for each image before proceeding
to the next one (see figure 4 for an example of this interface).
However we argue such an interface is not the most suitable
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Fig. 6. User study for the user interface for image annotation
organized by concept.

choice to annotate images with multiple labels, because
the annotators must switch their minds between different
concepts to annotate these images and it can exhaust an-
notators’ energy more quickly. An alternative choice is to
annotate all the images exhaustively with a concept before
proceeding to the next one. In this interface, annotators can
focus on only one concept at one time so that they can
quickly browse a group of images to judge if the concept
exists in these images. That is because the vision system of
human beings can rapidly respond to visual information of
multiple images in a very short time. For example, given
the images in an annotation interface illustrated in Figure
5, annotators can find which images contain the concept
“airplane” in a rather short time, instead of having to judge
these images one by one. In contrast, in the traditional
annotation interface of Figure 4, annotators cannot focus on
one concept to annotate all the images before proceeding to
the next concept, and it reduces the annotators’ efficiency.
Therefore, we organize the image annotation by concept as
illustrated in Figure 5 rather than by image as in Figure
4. In addition to the consideration of annotation efficiency,
organizing annotation by concept can also lead to more
accurate and complete annotation than annotating all con-
cepts for each image simultaneously. Past experience has
shown that the latter can cause many concepts to be missed
(i.e., causing false negative labeling) [34].

In the user interface that organizes image annotation
by concept as Figure 5, the annotation workload is pro-
portional to the number of sample-label pairs rather than
the number of distinct images associated with these pairs,
because the time used to annotate a certain concept for an
image (i.e., a sample-label pair) can be assumed to be a
constant on average. Therefore in this interface, it is rea-
sonable to compare the performances of 2DAL against the
other active learning approaches under the same number
of selected sample-label pairs as the basic unit to measure
the annotation costs.

To verify the assumption that image annotation workload
is proportional to the number of label-sample pairs rather
than the number of distant images in the annotation inter-
face organized by concept, we conduct a user study on this
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User ID Organizing annotation Organizing annotation
by image by concept

1 3660 1386
2 3138 1230
3 3138 1162

TABLE I
COMPARISON BETWEEN THE INTERFACE ORGANIZING ANNOTATION

BY IMAGE AND THAT BY CONCEPT.

Class Total Class Total
Beach 369 Beach+Mountain 38
Sunset 364 Foliage+Mountain 13
Foliage 360 Field+Mountain 75
Field 327 Field+Foliage+Mountain 1
Beach+Field 1 Urban 405
Foliage+Field 23 Beach+Urban 19
Mountain 405

TABLE II
Scene DATA SET

interface. Each of three users annotated 200 sample-label
pairs that are associated with varying number of images in
each step. This step was repeated ten times, yielding 2,000
sample-label pairs per user. First, we compare the anno-
tation efficiency on the interface organizing annotation by
image as Figure 4 and that by concept as Figure 5. In table
I, we report the time used on these two interfaces by these
three users. Obviously organizing annotation by concept is
much more efficient than that by image and thus we will
adopt the former one to annotate images. Second we verify
the image annotation workload is related to the number
of label-sample pairs on the interface as Figure 5. Figure 6
illustrates the linear relationship between annotation time
and the number of annotated sample-label pairs on this
interface. We can find the annotation time is proportional to
the number of annotated sample-label pairs. It verifies the
annotation workload can be measured by the number of
sample-label pairs. Therefore in the later experiments, we
will compare the performances of different active learning
approaches under the same number of sample-label pairs.

VI. EXPERIMENTS ON TWO BENCHMARK DATASETS

In this section, we conduct experiments on two publicly
available datasets to evaluate the proposed algorithm.

A. Natural scene classification
This natural scene data set is first used in a previous re-

search on the multi-label image scene classification problem
[13]1. It contains 2, 407 natural images belonging to one or
more of six natural scene categories including beach, sunset,
fall foliage, field, mountain, and urban. Since the data sets
are multi-labeled, there are 14, 442 sample-label pairs in this
set.

An image is first converted into CIE Luv color space
and then the first and second color moments (mean and

1This data set is publicly available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multilabel
.html#scene-classification.
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Fig. 7. The performance of three active learning strategies over the
Scene data set.

Class 2DAL+online 1DAL+SVM Baseline
Beach 0.9523 0.8652 0.6744
Sunset 0.9916 0.9421 0.9002
Fall Foliage 0.9887 0.9338 0.8927
Field 0.9588 0.8813 0.8071
Mountain 0.7806 0.6457 0.6122
Urban 0.8534 0.6162 0.6856

TABLE III
F1 SCORES AFTER 100 ITERATIONS ON SIX SCENE CATEGORIES.

variance) are extracted over a 7× 7 grid on the image. The
end result is a 49 × 2 × 3 = 294 dimension feature vector
[13].

In this experiment, we compare the following three active
learning strategies:

1 The proposed 2DAL strategy (2DAL+online): us-
ing the proposed sample-label pair selection cri-
terion in Section II-B, associated with the online
adaptation statistical model (23) as the underlying
classifier.

2 1D active learning strategy (1DAL+SVM): using
the mean-max loss active learning strategy that
has been proposed in [12] on multi-label active
learning. As stated in Section I, this strategy selects
only along the sample dimension. It does not
take advantage of the label correlations to reduce
human labeling cost. To the best of our knowledge,
there exist very limited literatures on the multi-
label active learning [12] [14] and 1DAL here is
among these methods. All these existing methods
are 1D-style active learning which only selects
samples rather than sample-label pairs. Thus we
compare with the existing 1DAL method to verify
the effectiveness of the proposed 2DAL.

3 Baseline: the random strategy - selecting the
sample-label pairs at random. For the sake of fair
comparison with the proposed 2DAL, we also use
the online adaptation learner (23) in Section III as
the classifier.
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Fig. 8. The performance of three active learning strategies over the
Yeast data set.

We use the average F1 score over all different labels
for performance evaluation, i.e., F1 = 2rp

r+p where p and
r are precision and recall respectively. It is the harmonic
mean of precision and recall. In statistics, the F1 score
measures a test’s accuracy and has been widely used in
information retrieval. For this Scene data set, we use 241
(10%) images as the initial training set. In each iteration, 60
sample-label pairs are selected by the 2DAL. Note that, for
1DAL, it requests annotation on the basis of samples rather
than sample-label pairs, so in each iteration, it selects 10
images for annotating all the six labels or equivalently 60
image-label pairs. The average F1 score is then computed
over all the remaining unlabeled data. In Figure 7, we
show the performance of these three strategies versus the
number of the selected sample-label pairs. The proposed
2DAL has the best performance in all the iterations. With
the number of selected pairs increasing, the improvement
becomes more and more significant. Table III compares
the F1 scores after 100 iterations over all the six scene
categories, which illustrates 2DAL outperforms the other
strategies on all the labels. In particular, the improvement
is obvious on “Urban”. Such an improvement is obtained
by considering its significant correlations with other labels,
such as “Mountain” and “Fall foliage”. It confirms 2DAL
can obviously improve the classification performance.

Note that in the above comparison, the performances of
different active learning approaches are compared under
the same number of sample-label pairs. As indicated in
Section V, the labor cost for image annotation is linear to the
number of sample-label pairs in the user interface as Figure
5. Therefore it is reasonable to prove the superiority of an
active learning algorithm if it can improve the classification
accuracy with the same number of selected sample-label
pairs.

B. Gene Classification

The second benchmark data set is the Yeast data set
[11] which consists of micro-array expression data and
phylogenetic profiles with 2,417 genes. Each gene in the set
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Fig. 9. The distribution of the label numbers for the gene samples on
the Yeast data set.

belongs to one or more of 14 different functional classes2,
yielding 33, 838 sample-label pairs. Figure 9 illustrates the
distribution of the label numbers for the gene samples
on this Yeast data set. The detailed description about this
biological data set can be found in [35].

In the experiment, 242 (10%) genes with their labels are
used as the initial training set. In each iteration, 140 sample-
label pairs are selected. Similar to the above subsection,
1DAL selects 10 samples for annotating all their labels,
which is 140 sample-label pairs. Figure 8 compares the
performance of the three strategies.

From the above two experiments, we have observed:
1 Given a fixed number of annotations, 2DAL out-

performs 1DAL over all the active learning iter-
ations. This is because the former considers both
sample and label uncertainty for selecting sample-
label pair, while 1DAL only considers the sam-
ple uncertainty. Therefore, the informative label
correlations associated with each sample can help
to reduce the expensive human labor needed to
construct the labeled pool.

2 The proposed 2DAL gives good performance on
diverse data sets, ranging from natural scenes to
gene images. This is an important character of a
good algorithm to be used in real-world applica-
tions.

VII. REAL-WORLD IMAGE CLASSIFICATION

In this section, we evaluate the proposed online active
learning algorithm on a real-world image data set. This
data set is obtained from an image sharing website - Corbis
(http://www.corbis.com). Figure 10 illustrates the snapshot
of this website. We construct a realistic image data set from
this website. This data set contains 28,868 images uploaded
by the users. Each image is annotated from a set of 23 labels.
Table IV shows these 23 labels and the image numbers
associated with them. Figure 11 illustrates some example
images and their associated labels. We can find these real-
world images are usually annotated by multiple labels.

2This data set is publicly available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multilabel
.html#yeast
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Fig. 10. Snapshot of the image sharing Website - Corbis:
http://www.corbis.com. This website provides a service of searching
the images by their keywords. Such a service proposes the requirement
to automatically annotate the labels of the images. In this example, this
service returns the images that have labeled by the keyword “bird”.

Different from the global features extracted from the
images in the Scene data set [13], we extract the dense local
features as suggested in [36]. In more detail, each image is
first normalized into 256×256 pixels and then represented
by a two dimensional array of local patches. Each local
patch has 16×16 pixels over a grid with spacing of 8 pixels.
We extract three kinds of features for each patch as follows
• Color moments (9 dim) - the first, second and third

color moments in each component of CIE Luv color
space.

• Co-occurrence texture (16 dim) - it computes the occur-

Label Name Total Label Name Total
airplane 350 face 998
bicycle 5146 flower 512

bird 13899 grass 5178
boat 1617 road 956
body 4532 sheep 3455
book 1200 sign 1262

building 8736 sky 1091
car 2808 tree 235
cat 1041 water 175

chair 3910 mountain 1225
cow 2454 horse 126
dog 1462

TABLE IV
THE NUMBER OF IMAGES ASSOCIATED WITH EACH LABEL IN THE

CORBIS DATA SET.

rence distribution of the 16 different patterns in a local
patch.

• SIFT descriptor - the 128-dimensional SIFT descriptor
is processed by principal component analysis (PCA) to
reduce its dimensionality to 50.

With the above grid-based two dimensional representation
of images, we can compute a kernel between the images
into the proposed algorithm as depicted in Section IV.
In this paper, we use the joint appearance-spatial kernel
proposed in our previous work [37]. This kernel is based
on the distance between two Dependent Tree - HMMs (DT-
HMMs) [38] - a variant 2-Dimensional Hidden Markov
Model (2DHMM). Figure 12 illustrates an example of DT-
HMM. With this structure of 2D Markov fields on the
images, we can tractably compute a tighter upper bound of
the Kullback-Leibler Divergence (KLD) between these DT-
HMMs. Accordingly a kernel can be defined on the basis of

 

Fig. 11. Some examples of the images acquired from the Corbis website and their associated labels. From these examples, we can find most
of the real-world images can be annotated by multiple labels simultaneously.
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Fig. 12. An example of Dependent Tree Hidden Markov Model
(DT-HMM) [38]. A joint appearance-spatial kernel can be defined
by computing the Kullback-Leibler Divergence between these DT-
HMMs [37]. This kernel can capture the image similarity of both the
appearance and the spatial structure in a unifying formulation.

the KLD by exponentiating them. The reason that we choose
this kernel in this paper is twofolds. First, different from
many other kernels which only measure the appearance
similarity between images, this kernel can also measure
the spatial similarity simultaneously. In fact, the spatial
structure of local patches is rather important cue for im-
age classification problem. Thus a joint appearance-spatial
kernel like this one can bring significant advantage during
the classification. Second, we extract three different kinds
of feature modalities as above. Effective fusion of these
modalities in classification attracts much research attentions
[39]. This kernel algorithm can compute the similarity mea-
sure between images over all the modalities simultaneously
without a late fusion [39] of the classification results on each
single modality. The details about computing these kernels
can be found in [37].

A. Performance Comparison with Previous Work

In this experiment, we also compare the proposed
2DAL+online approach with 1DAL+SVM and Baseline like
the experiments on the benchmark data sets.

At the beginning, we use 10,000 images as the initial
training set. In each iteration, 1DAL selects 100 images
for annotating all 23 labels, containing 100 × 23 = 2, 300

sample-label pairs. Equivalently 2DAL and the random
baseline request annotation of 2,300 sample-label pairs. A
separate set of 5,000 samples are used as validation set and
the average F1 score is computed on it to compare the
performances of different approaches. Such active learning
iterations are repeated 100 times. Figure 13 illustrates the
performance of the three active learning strategies. We can
find that

1 The 2DAL+online has the best performance of all
the three strategies in the all 100 iterations.

2 After 100 iterations, F1 score of the 2DAL+online
obtains 0.772 in contrast to 0.629 for 1DAL+SVM
and 0.557 for the baseline. In other words,
2DAL+online gains 22.7% and 38.6% improve-
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Fig. 13. Comparison of various active learning approaches.
(1) 2DAL+online: using 2DAL strategy with the online learner;(2)
EnAL+online: using the most uncertainty criterion with the online
learner; (3) 1DAL+online: using 1DAL strategy with online learner;
(4) 1DAL+SVM: using 1DAL strategy with SVM learner; (5) Baseline:
using the random strategy.

ments compared to 1DAL+SVM and the baseline
in terms of F1 score.

B. Does label correlation really help in 2DAL?
To show the superiority of the proposed 2DAL+online,

we conduct an experiment which also selects the sample-
label pairs like 2DAL+online but ignores the label cor-
relations. As presented in Eqn. (10), the 2DAL strategy
can be divided into two terms: one is the self entropy
for the selected sample-label pair and the other is its
correlations with the other labels. If we ignore the second
term, this strategy reduces to an algorithm similar to the
traditional active learning approach which only selects the
most “informative” pair but ignores the label correlations.
Here we test the strategy without the second term to see if
the label correlation really contributes to the performance
improvement. We call this strategy EnAL (Entropy based
Active Learning) since it only uses the first entropy term.
For the sake of fair comparison with 2DAL, we also use
the online learner as the underlying classifier in EnAL. The
experimental results are illustrated in Figure 13 denoted by
EnAL+online. From this illustration, we can observe that
• 2DAL+online outperforms EnAL+online in all the 100

iterations. This result proves utilizing the label corre-
lations in active learning is a better strategy.

C. Where the superiority of 2DAL+online comes from, 2DAL
selection strategy or online learner?

It is worthy of noting that 2DAL+online is based on the
proposed online learner for the multi-label classification in
Section III while 1DAL+SVM proposed in [12] depends on
SVM learner. We conduct extra experiments here to testify
whether the performance gain in 2DAL+online comes from
the 2DAL selection strategy proposed in Section II or from
the online learner developed in Section III. Three compared
experiments are conducted as
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(a) Iteration number = 20
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(b) Iteration number = 40
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(c) Iteration number = 50
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(d) Iteration number = 60
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(e) Iteration number = 80
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(f) Iteration number = 100

Fig. 14. The horizontal axis in each figure denotes the linear correlation coefficients C between the labels calculated from the labeling ground
truth. Here, the linear correlation coefficients can be seen the label correlation ground truth. The vertical axis denotes the elements in R. The
dashed line is the linear regression from the points in figures. These figures illustrate the relation between the label correlation ground truth
(horizontal axis) and the corresponding elements in R (vertical axis). With the increment of the iteration number, the compliance between the
label correlation ground truth C and the elements in R becomes more and more significant. That is to say, a large Cij usually has a large Rij

and vice versa. Such a compliance indicates the learned R can reflect the label correlations contained in the labeling ground truth of the Corbis
data set.

1 Experiment I: it uses the online learner as the un-
derlying statistical model and selects the sample-
label pairs according to the proposed 2DAL strat-
egy, which is 2DAL+online.

2 Experiment II: it also uses the online learner
to train the label prediction model. However, it
trains the classification model based on the im-
age samples selected by 1DAL algorithm, that is
1DAL+online.

3 Experiment III: it uses the typical SVM as the
underlying learner and the 1DAL strategy to select
image samples, that is 1DAL+SVM.

The Experiment I and Experiment III are the same as the
above 2DAL+online and 1DAL+SVM algorithms. In con-
trast, Experiment II combines the sample selection strategy
in Experiment III and the online learner in Experiment I,
i.e., in each iteration, the underlying learner in Experiment
II is trained from the same selected data set in Experiment
III. Thus we denote experiment II by 1DAL+online. Figure
13 compares the results of these three experiments. From
these results, we can observe

1 Under the same underlying learner (i.e., online
learner), 2DAL+online has the better performance
than the 1DAL+online. It indicates 2DAL selection
strategy is superior to the 1DAL selection strategy.

2 On the other hand, the underlying learners of
1DAL+online and 1DAL+SVM are trained on the

same selected data set. It demonstrates the online
learner for multi-label classification performs bet-
ter than the typical SVM learner.

From the above observations, we can conclude that both the
2DAL selection strategy and the online learner contribute
to the performance improvement of the proposed 2DAL
algorithm (2DAL+online).

The superiority of the online learner is owed to the
rich multi-label correlations in data set while the typical
SVM learner ignores them. To demonstrate it, we illustrate
the label correlations and their corresponding parameters
in the matrixR in Figure 14. As discussed in Section III,
each element Rij in R is related to the label correlations
between the label i and j. In Figure 14, we illustrate the
label correlation ground truth Cij in the horizontal axis
versus the learned Rij in the vertical axis (1 ≤ i < j ≤ m).
Here Cij denotes the linear correlation coefficient between
the label i and j calculated from the labeling ground truth
over the whole data set. From this figure, we can find
when the iteration number of active learning increases
from 20, 40, 50, 60, 80 until 100, the compliance between the
label correlation ground truth C and the learned model
parameter R becomes more and more significant. That is
to say, a larger Cij usually has a larger Rij and vice versa.
It confirms the learned model parameters R can reflect the
real labeling correlations of the data set. In the other words,
the online learner captures the label correlation evolution
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Sample Selection Computing Time
2DAL 149.5 seconds
1DAL 92.9 seconds

TABLE V
THE AVERAGE COMPUTING TIME USED FOR SAMPLE SELECTION IN EACH

ITERATION

Learning Model Computing Time
Online Learner 7.7 minutes
SVM 67.3 minutes

TABLE VI
THE AVERAGE COMPUTING TIME FOR UPDATING/RETRAINING MODELS

IN EACH ITERATION.

contained in the selected sample-label pairs during the
active learning procedure.

D. Computing Time
With the use of the proposed online learner, 2DAL is

significantly more efficient than 1DAL which is based the
offline SVM learner [12] . We summarize and compare the
average computing time of the proposed 2DAL and 1DAL
in each active learning iteration in Table V and VI. They are
both performed on a 3.0GHz PC with 1GB RAM memory.
The computing time consists of two parts. One part is
for the sample selection in active learning and the other
is for updating online model for 2DAL or retraining the
SVM model for 1DAL. As for the computing time spent on
sample selection, 2DAL strategy spends a little more time
than 1DAL. They respectively use average 149.5 seconds
and 92.9 seconds in each iteration. On the other hand,
the online learner is much more efficient than the SVM
in each iteration of updating/retraining their respective
models. From Table VI, the online learner is nearly one
order magnitude faster than the typical SVM, because it
can be updated by only using the newly-acquired training
samples while SVM needs to be retrained on all the training
samples.

VIII. CONCLUSION

In this paper, we develop a two-dimensional multi-label
active learning algorithm asking for human annotation
along both sample and label dimensions. In contrast to the
typical one-dimensional active learning algorithm that asks
to annotate all the labels of the selected image samples,
this 2DAL strategy only requires to annotate a part of label
set given the selected samples and the remaining part can
be inferred according to the learned label correlations. This
strategy can effectively reduce the unnecessary annotation
labor to construct the training set for a classifier. Specifically,
we derive a multi-label Bayesian error bound and the new
sample-label pairs are selected to minimize it.

Furthermore, we also develop an online adaptation
model which update the existing model with only the
newly-acquired samples. Most of the existing learning al-
gorithm has to be retrained with all historically-acquired
training samples. This learning scheme becomes impractical
when more and more training samples are accumulated into

the training set over time during the active learning itera-
tions. Instead, the proposed online learner can efficiently
update the existing model without retraining it. In detail,
the new model is obtained by minimizing its Kullback-
Leibler distance from the existing one under a set of multi-
label constraints.

Finally, we conduct experiments on two benchmark data
sets and a real-world image data set obtained from an
image sharing website - Corbis. The experiments prove the
superiority of the proposed 2DAL strategy to the other
existing multi-label active learning algorithm. Furthermore,
it also demonstrates the efficiency of the online learner
compared to the other learning algorithm with retraining
mode.

APPENDIX I
PROOF OF THE LEMMA 1

Here we give the proof of Lemma 1. Proof: Since
the selected ys can take on two values {0, 1}, there are two
possible posterior distributions for the unlabeled yi, i.e.,
P

(
yi|ys = 0; yL(x), x

)
and P

(
yi|ys = 1; yL(x), x

)
. If ys = 1

holds, the Bayesian classification error is [15]:

E
(
yi|ys = 1; yL(x), x

)
= min{P

(
yi = 1|ys = 1; yL(x), x

)

, P
(
yi = 0|ys = 1; yL(x), x

)
}

(47)
Given the inequality 1

2H(p)− ε ≤ min{p, 1− p} ≤ 1
2H(p), ε =

1
2 log 5

4 (see figure 15), we have

1
2H

(
yi|ys = 1; yL(x), x

)
− ε ≤ E

(
yi|ys = 1; yL(x), x

)

≤ 1
2H

(
yi|ys = 1; yL(x), x

) (48)

Similarly, if ys = 0 holds,

1
2H

(
yi|ys = 0; yL(x), x

)
− ε ≤ E

(
yi|ys = 0; yL(x), x

)

≤ 1
2H

(
yi|ys = 0; yL(x), x

)
.

(49)

Therefore, the Bayesian classification error bound given the
selected ys can be computed as:

E
(
yi|ys; yL(x), x

)

= P
(
ys = 1|yL(x), x

)
E

(
yi|ys = 1; yL(x), x

)

+P
(
ys = 0|yL(x), x

)
E

(
yi|ys = 0; yL(x), x

)

≤ 1
2P

(
ys = 1|yL(x), x

)
H

(
yi|ys = 1; yL(x), x

)

+ 1
2P

(
ys = 0|yL(x), x

)
H

(
yi|ys = 0; yL(x), x

)

= 1
2H

(
yi|ys; yL(x), x

)

(50)

The last equality follows the definition of conditional en-
tropy. And similarly

E
(
yi|ys; yL(x), x

)

= P
(
ys = 1|yL(x), x

)
E

(
yi|ys = 1; yL(x), x

)

+P
(
ys = 0|yL(x), x

)
E

(
yi|ys = 0; yL(x), x

)

≥ 1
2P

(
ys = 1|yL(x), x

) {
H

(
yi|ys = 1; yL(x), x

)
− 2ε

}

+ 1
2P

(
ys = 0|yL(x), x

) {
H

(
yi|ys = 0; yL(x), x

)
− 2ε

}

= 1
2H

(
yi|ys; yL(x), x

)
− ε

(51)



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1

2
H(p)

min{p, 1 − p)

ε

Fig. 15. Illustration of the inequality 1
2
H(p) − ε ≤ min{p, 1 − p} ≤

1
2
H(p), ε = 1

2
log 5

4

REFERENCES

[1] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of ob-
ject categories,” IEEE Transaction on Pattern Analysis and Machine
Intelligence, 2006.

[2] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrel, “Active
learning with gaussian processes for object categorization,” in
Proc. of IEEE ICCV, 2007.

[3] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, T. Mei, and H.-J. Zhang, “Cor-
relative multi-label video annotation,” in Proc. of ACM Conference
on Multimedia (ACM Multimedia), 2007.

[4] S. Zhu, X. Ji, W. Xu, and Y. Gong, “Multi-labelled classification
using maximum entropy method,” in Proc. of ACM SIGIR, 2005.

[5] G.-J. Qi, Y. Song, X.-S. Hua, L.-R. Dai, and H.-J. Zhang, “Video
annotation by active learning and cluster tuning,” in International
Workshop on Semantic Learning Applications in Multimedia, in asso-
ciation with CVPR, 2006.

[6] S. C. H. Hoi and M. R. Lyu, “A semi-supervised active learning
framework for image retrieval,” in Proc. of IEEE CVPR, 2005.

[7] A. Dong and B. Bhanu, “Active concept learning for image
retrieval in dynamic databases,” in IEEE Proc. of ICCV, 2003.

[8] R. Yan, J. Yang, and A. Hauptmann, “Automatically labeling data
using multi-class active learning,” in Proc. of IEEE ICCV, 2003.

[9] S. Tong and E. Y. Chang, “Support vector machine active learning
for image retrieval,” in Proc. of ACM Conference on Multimedia,
2001.

[10] E. Y. Chang, S. Tong, K. Goh, and C. Chang, “Support vector
machine concept-dependent active learning for image retrieval,”
IEEE Transaction on Multimedia, 2005.

[11] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor
placements in gaussian processes: Theory, efficient algorithms and
empirical studies,” Journal of Machine Learning Research, vol. 9, pp.
235–284, 2008.

[12] X. Li, L. Wang, and E. Sung, “Multi-label svm active learning for
image classification,” in Proc. of ICIP, 2004.

[13] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-
label scene classification,” Pattern Recognition, vol. 37, no. 9, 2004.

[14] K. Brinker, “On active learning in multi-label classification,”
”From Data and Information Analysis to Knowledge Engineering” of
Book Series ”Studies in Classification, Data Analysis, and Knowledge
Organization”, Springer, 2006.

[15] M. E. Hellman and J. Raviv, “Probability of error , equivocation,
and the chernoff bound,” IEEE Transaction on Information Theory,
1970.

[16] A. Kapoor and E. Horvitz, “On discarding, caching, and recalling
samples in active learning,” in Proc. of Uncertainty and Artificial
Intelligence, 2007.

[17] F. Jing, M. Li, and H.-J. Zhang, “Entropy-based active learning
with support vector machine for content-based image retrieval,”
in Proc. of IEEE Conference on Multimedia and Expo, 2004.

[18] N. Roy and A. McCallum, “Toward optimal active learning
through sampling esitmation of error reduction,” in Proc. of ICML,
2001.

[19] T. Cover and J. Thomas, Elements of information theory, second
edition. New York: Wiley Series in Telecommunications, John
Wiley and Sons, 2006.

[20] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, and H.-J. Zhang, “Two
dimensional active learning for image classification,” in IEEE Proc.
of CVPR, 2008.

[21] C. Bishop, Pattern recognition and machine learning. Springer, 2006,
ch. Approximate Inference, pp. 461–473.

[22] S. F. Chen and R. Rosenfeld, “A gaussian prior for smooting max-
imum entropy models,” School of Computer Science, Carnegie
Mellon University, Tech. Rep. CMU-CS-99-108, 1999.

[23] J. Wu, X.-S. Hua, and B. Zhang, “Tracking concept drifting with
gaussian mixture model,” in International Conference on Visual
Communications and Image Processing, 2005.

[24] D. C. Liu and J. Nocedal, “On the limited memory BFGS method
for large scale optimization,” Mathematical Programming B, vol. 45,
no. 1-3, pp. 503–528, 1989.

[25] N. Syed, H. Liu, and K. Sung, “Incremental learning with support
vector machines,” in Workshop on Support Vector Machines, at the
IJCAI, 1999.

[26] G. Cauwenberghs and T. Poggio, “Incremental and decremental
support vector machine,” in Proc. of Neural Information Processing
Systems, 2000.

[27] J. Yang, R. Yan, and A. Hauptmann, “Cross-domain video concept
detection using adaptive svms,” in ACM Conference on Multimedia,
2007.

[28] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum-
likelihood from incomplete data via em algorithm,” Journal of the
Royal Statistical Society (Series B), vol. 39, no. 1, 1977.

[29] R. Neal and G. Hinton, A view of the EM algorithm that justifies
incremental, sparse, and other variants, ser. Learning in Graphical
Models, M. Jordan, Ed. Kluwer Academic Press, 1998.

[30] R. M. Neal, “Probabilistic inference using markov chain monte
carlo methods,” University of Toronto, Tech. Rep. CRG-TR-93-1,
1993.

[31] B. J. Frey and D. J. C. MacKay, “A revolution: belief propagation
in graphs with cycles,” in Advances in Neural Information Processing
Systems, vol. 10. The MIT Press, 1998.

[32] T. Minka, “Expectation propagation for approximate bayesian
inference,” in Proc. of the Seventeenth Conference on Uncertainty in
Artificial Intelligence, 2001.

[33] K. P. Murphy, Y. Weiss, and M. I. Jordan, “Loopy belief propa-
gation for approximate inference: An empirical study,” in Proc. of
Conference on Uncertainty in Artificial Intelligence, 1999.

[34] T. Volkmer, J. R. Smith, and A. Natsev, “A web-based system for
collaborative annotation of large image and video collections,” in
Proc. of International ACM Conference on Multimedia, 2005.

[35] A. Elisseeff and J. Weston, “A kernel method for multi-labelled
classification,” in Proc. of NIPS, 2002.

[36] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for
learning natural scene categories,” in Proc. of IEEE CVPR, 2005.

[37] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, Z.-J. Zha, and H.-J. Zhang, “A
joint appearance-spatial distance for kernel-based image catego-
rization,” in IEEE Proc. of CVPR, 2008.

[38] B. Merialdo, J. Jiten, E. Galmar, and B. Huet, “A new approach
to probabilistic image modeling with multimensional hidden
markov models,” in Proc. of 4th International Workshop on Adaptive
Multimedia Retrieval, 2006.

[39] C. G. M. Snoek, M. Worring, J. C. Gemert, J.-M. Geusebroek,
and A. W. M. Smeulders, “The challenge problem for automated
detection of 101 semantic concepts in multimedia,” in Proceedings
of the ACM International Conference on Multimedia, Santa Barbara,
USA, October 2006, pp. 421–430.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 18

Guo-Jun Qi Mr. Guo-Jun Qi received the B.E.
degree from University of Science and Tech-
nology of China in Automation, Hefei, An-
hui, China, in 2005. His research interests in-
clude computer vision, multimedia, and ma-
chine learning, especially content-based im-
age/video retrieval, analysis, management and
sharing. He was the winner of the best paper
award in the 15th ACM International Confer-
ence on Multimedia, Augsburg, Germany, 2007.
He is now working in Internet Media Group

at Microsoft Research Asia as a research intern. Mr. Qi is a student
member of Association for Computing Machinery.

Xian-Sheng Hua Dr. Xian-Sheng HUA received
the B.S. and Ph.D. degrees from Peking Uni-
versity, Beijing, China, in 1996 and 2001, re-
spectively, both in applied mathematics. Since
2001, he has been with Microsoft Research Asia,
Beijing, where he is currently a Lead Researcher
with the internet media group. His current
research interests include video content analy-
sis, multimedia search, management, authoring,
sharing and advertising. He has authored more
than 130 publications in these areas and has

more than 30 filed patents or pending applications. HUA is a member
of the Association for Computing Machinery and IEEE. He is an
adjunct professor of University of Science and Technology of China,
and serves as an Associate Editor of IEEE Transactions on Multimedia
and Editorial Board Member of Multimedia Tools and Applications.
Hua won the Best Paper Award and Best Demonstration Award in
ACM Multimedia 2007. He also won TR35 2008 Young Innovator
Award of MIT Technology Review.

 

Yong Rui Dr. Yong Rui serves as Director of
Strategy of Microsoft China R&D (CRD) Group.
Before this role, Dr. Rui spent seven years and
managed the Multimedia Collaboration team at
Microsoft Research Redmond.

Dr. Rui is a Senior Member of both ACM and
IEEE. He is an Associate Editor of ACM Trans-
actions on Multimedia Computing, Commu-
nication and Applications (TOMCCAP), IEEE
Transactions on Multimedia, and IEEE Tran on
Circuits and Systems for Video Technologies.

He was an Editor of ACM/Springer Multimedia Systems Journal (2004-
2006), International Journal of Multimedia Tools and Applications
(2004-2006), and IEEE Tran on Multimedia (2004-2008). He also serves
on the Advisory Board of IEEE Transactions on Automation Science
and Engineering. He received his BS from Southeast University, his
MS from Tsinghua University, and his PhD from University of Illinois
at Urbana-Champaign (UIUC). He also holds an Executive Training
Certificate from Wharton Business School, University of Pennsylvania.

Dr. Rui contributes significantly to the research communities in
computer vision, signal processing, machine learning, and their ap-
plications in communication, collaboration, and multimedia systems.
His contribution to relevance feedback in image search created a
new research area in multimedia. He has published twelve books
and book chapters, and over seventy referred journal and conference
papers. Dr. Rui holds 30 issued and pending US patents. Dr. Rui
was on Organizing Committees and Program Committees of ACM
Multimedia, IEEE CVPR, IEEE ECCV, IEEE ACCV, IEEE ICIP, IEEE
ICASSP, IEEE ICME, SPIE ITCom, ICPR, CIVR, among others. He is
a General Chair of Int. Conf. Image and Video Retrieval (CIVR) 2006,
a Program Chair of ACM Multimedia 2006, and a Program Chair of
Pacific-Rim Conference on Multimedia (PCM) 2006.

 

Jinhui Tang Dr. Jinhui Tang is currently a
postdoctoral research fellow in School of Com-
puting, National University of Singapore. He
received his B.E. and PhD degrees in July 2003
and July 2008 respectively, both from the Uni-
versity of Science and Technology of China.
From Jun. 2006 to Feb. 2007, he worked as
a research intern in Internet Media group at
Microsoft Research Asia. And from Feb. 2008
to May 2008, he worked as a research intern
in School of Computing at National University

of Singapore. He is a recipient of the 2008 President Scholarship of
Chinese Academy of Science, and a co-recipient of the Best Paper
Award in ACM Multimedia 2007. His current research interests include
content-based image retrieval, video content analysis and pattern
recognition. Dr. Tang is a member of ACM and a student member
of IEEE.

Hong-Jiang Zhang Dr. HongJiang Zhang
(M’91-SM’97-Fellow’03) received his Ph.D from
the Technical University of Denmark, Lyngby
in 1991 and his BS from Zhengzhou University,
Henan, China, 1982, both in Electrical Engi-
neering, respectively. From 1992 to1995, he was
with the Institute of Systems Science, National
University of Singapore, where he led several
projects in video and image content analysis
and retrieval and computer vision. From 1995
to 1999, he was a research manager at Hewlett-

Packard Labs, Palo Alto where he was responsible for research and
development in the areas of multimedia management and intelligent
image processing. In 1999, he joined Microsoft Research, where he
is currently the Managing Director of Advanced Technology Center
in Beijing. Dr. Zhang is a Fellow of IEEE and ACM. He has co-
authored/co-edited 4 books, over 350 papers and book chapters,
numerous special issues of international journals on image and video
processing, content-based media retrieval, and computer vision as well
as over 60 granted patents. He currently serves as the Editor In Chief
of IEEE Transactions on Multimedia and on the editorial board of
Proceedings of IEEE.


