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Abstract—The goal of image classification is to classify a col-
lection of unlabeled images into a set of semantic classes. Many
methods have been proposed to approach this goal by leveraging
visual appearances of local patches in images. However, the spatial
context between these local patches also provides significant infor-
mation to improve the classification accuracy. Traditional spatial
contextual models, such as two-dimensional hidden Markov model,
attempt to construct one common model for each image category
to depict the spatial structures of the images in this class. However
due to large intra-class variances in an image category, one single
model has difficulties in representing various spatial contexts in
different images. In contrast, we propose to construct a prototype
set of spatial contextual models by leveraging the kernel methods
rather than only one model. Such an algorithm combines the ad-
vantages of rich representation ability of spatial contextual models
as well as the powerful classification ability of kernel method. In
particular, we propose a new distance measure between different
spatial contextual models by integrating joint appearance-spatial
image features. Such a distance measure can be efficiently com-
puted in a recursive formulation that scales well to image size. Ex-
tensive experiments demonstrate that the proposed approach sig-
nificantly outperforms the state-of-the-art approaches.

Index Terms—2-D hidden Markov model, image classification,
kernel method, spatial context.

I. INTRODUCTION

I MAGE categorization has attracted much attention in re-
cent years. Its goal is to categorize a collection of unlabeled

images into a set of predefined classes for semantic-level image
retrieval. Among various image classification methods, many
researchers have developed a set of sophisticated models, to rep-
resent the spatial context of the local patches in the images, e.g.,
hidden conditional random fields [2], constellation model [3],
etc. Among them, 2-dimensional hidden Markov model (2-D
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Fig. 1. Using one common 2-D HMM to model the category “car” with large
intra-class variance. In this example, four different views in “car” make one
model inadequate to capture such an intra-class variance.

HMM) has attracted much attention as a classic spatial contex-
tual model [4]–[6]. This model can efficiently capture the spatial
context among different patches in the images. In more detail,
when using 2-D HMM for image categorization, a model is first
learned from a training set of images for each image class. Then
this learned model can be used to score the probability of an un-
labeled image belonging to this class. However, the images in
one class usually have large intra-class variance and this vari-
ance often leads to the difficulty in constructing a common spa-
tial contextual model for this class. Fig. 1 illustrates an example
of this difficulty. The images in the category “car” have many
different views in this example, such as top view, side view, front
view, and back view. Each view has a different spatial context
of their local patches. These differences between the image spa-
tial contexts bring large intra-class variance for this category.
As stated above, the traditional 2-D HMM attempts to use a
common model to generate all these images with different spa-
tial structures. Therefore, the depictive ability of a single model
is too limited to capture large intra-class variance perfectly. Ac-
tually, the above problem also exists in many other spatial-con-
textual models for image categorization, which attempt to use
one common generative model to represent one class, such as
HCRF [2] and constellation model [3].

To overcome the drawback in the above models, we propose
a different kernelized spatial-contextual model for image cate-
gorization. This model can better capture the intra-class vari-
ance. The underlying motivation is to separate the representa-
tion model from the classification model, so that it need not be
limited to construct a single model for one class. We will detail
this idea in the following section.

As aforementioned, the problem of the traditional 2-D HMM
is it attempts to use only one common model to represent an
image class with large intra-class variance. Instead of only using

1520-9210/$26.00 © 2010 IEEE



QI et al.: IMAGE CLASSIFICATION WITH KERNELIZED SPATIAL-CONTEXT 279

one common model, our idea is to construct a set of “prototype”
models, each of which captures one “prototype” in this class.
For example, for the concept “car” illustrated in Fig. 1, we can
construct at least four different “prototype” models to represent
these views. By combining these four prototypes, we can obtain
a better spatial contextual model for “car”. Moreover, for the
image classification task, these prototypes can not only capture
the intra-class variance but also help to discriminate this concept
from the others.

With the above motivation, we are inspired to use the sup-
port vector machine (SVM) [7] together with 2-D HMM to
model spatial context and discriminate an image class with large
variance from other classes in an integrated model. As is well
known, SVM has a powerful discrimination ability to find a set
of prototype samples which can be used to distinguish different
image classes. These samples are called by the support vectors
(SVs) in SVM. For the classification task, these SVs contain the
complete information for an image class to discriminate itself
from other different classes. However, in the traditional manner,
these samples in SVM are some feature vectors with fixed length
extracted from each image. That is to say, these feature vec-
tors do not preserve any spatial contextual information in them.
Thus, we shall develop a model which can not only preserve
spatial context of images but also be well embedded into SVM
formulation.

Fortunately, when training an SVM model, we do not need to
use the original feature model directly. Instead, in its dual for-
mulation, we only need compute the kernel functions between
the image representations. In essence, this kernel functions re-
veal the similarity measure between the images. If we can de-
sign such a similarity measure between different spatial contex-
tual models such as 2-D HMMs, we can find a prototype set of
spatial-contexts for an image class which can be used to “opti-
mally” distinguish this class from others in terms of maximum
marginal principle [7] used in SVM.

Formally, given a set of training images and their
associated labels , we first learn an individual 2-D HMM

from each image. By computing the similarity measure
between these models, we can obtain a kernel function
between two models . Then a prediction function can be
learned by SVM as

(1)

where is the sign function. and are the learned 2-D
HMM from the images, and are the coefficients and bias.
This function gives the predicted label for the image associated
with model . Those ’s with the associated act as
support vectors in SVM which can be seen as the prototypes for
an image class to discriminate itself from the other categories.

Fig. 2 illustrates an example of such an SVM for the category
“car”. We can find it contains a set of SVs for the concept “car”,
each of which represents a certain view. By combining them as
(1), they can be used to predict the labels of “car” for the images.

Now the crucial problem of this kernelized spatial contextual
model becomes to design a proper similarity measure between
different images based on their respective 2-D HMM models.

Fig. 2. Example of 2-D HMM.

Actually, the image similarities have attracted much attention
in recent years. Some researchers attempt to compute the sim-
ilarities based on image appearances. For example, [8] utilizes
the Gaussian mixture models (GMMs) to represent a set of local
patches and then computes the similarity between two images
via the Fisher kernel between their respective GMMs. Other re-
searchers attempt to compute image similarities according to
their semantic distances between their labels [9]. However, all
the above algorithms do not consider the spatial context of local
patches in the associated images when computing the image
similarities, which we believe it is an important factor to dis-
criminate different image categories. Specifically, our goal is
to find an image similarity measure between spatial contextual
models which jointly considers the appearance-spatial distances
between images. As is well known, once such a distance (dis-
similarity) is computed, the similarity can be easily obtained. In
Section II, we will detail such a distance measure.

II. TWO-DIMENSIONAL HIDDEN MARKOV MODEL

In Section II-A, we review some related works on two-di-
mensional hidden Markov model. After that, a statistical model,
dependency-tree hidden Markov model (DT-HMM) [10] is in-
troduced to represent spatial structure of an image together with
its appearance. To capture the multi-modal features, we propose
to extend this model by combining a variety of cues from dif-
ferent feature sources.

A. Survey for Two-Dimensional Hidden Markov Model

Two-dimensional hidden Markov model has been intensively
studied, and many researchers have proposed their own models.
Li et al. [4] extend the traditional one-dimensional HMM into
a two-dimensional model by incorporating state dependencies
between the neighboring image blocks along both directions of
images. However, the computational cost will become imprac-
tical with increment of image sizes so that an approximation
algorithm is needed to give tractable inferences. After that, they
also propose another 2-D HMM to classify the images into dif-
ferent categories and propagate annotations from keywords as-
signed to those categories [6]. Similarly, Yu et al. [5] also pro-
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Fig. 3. (a) Dependency-tree hidden Markov model and (b) a multi-modal variant.

pose to build a spatial HMM for each concept class, and prop-
agate annotations for keywords associated with some specific
classes. Their model considers both the vertical and horizontal
transitions between hidden states. Recently, Merialdo et al. [10]
propose an alternative 2-D HMM with a more tractable struc-
ture and a significant efficiency can be obtained with an infer-
ence on its structure. This model also retains the rich depictive
ability to represent the two dimensional dependencies between
hidden states on the images. Therefore, we use it into our model
to represent an image. But the other 2-D HMMs can be applied
to our framework as well.

B. Brief Introduction to Dependency-Tree Hidden
Markov Model

DT-HMM is a new 2-D probabilistic modeling approach pro-
posed in [10]. It addresses the complexity of the other modeling
approaches such as 2-D HMM [4] while preserving the richness
of 2-D representation abilities and having a tractable exact in-
ference procedure.

Similar to that in 2-D HMM, we denote a 2-D observation
by , where each is
the feature vector of a block in the image. Let there be
states and the state of block is denoted by .
Under the typical dependency assumption in 2-D-HMM, each
state depends on its two neighbors , which
usually makes the computation complexity of the learning and
inference procedure exponentially grow with the image size in
practice [4]. In contrast, the idea of DT-HMM is to assume
only depends on one neighbor at a time. This neighbor may be
the horizontal or the vertical one, depending on a random vari-
able with the following distribution:

(2)

It is worth noting that for the first row or the first column,
has only one valid horizontal or vertical value. is not de-
fined. So the transition probability distribution can be simplified
as

(3)

where and are the vertical and horizontal transition prob-
ability distributions, respectively. The random variables for
all defines a tree-structured dependency over all positions
with as the root. Fig. 3(a) illustrates such a dependency
tree structure. In terms of computation cost, this structure is
highly efficient in inference and learning.

C. Multi-Modal DT-HMM With Multiple Feature Cues

Based on the above DT-HMM, we present how to combine
the multiple feature cues into this model. The underlying mo-
tivation to combine multiple feature cues is one single feature
often cannot capture the complete discriminative differences be-
tween the images. For example, as for the “white sand” on the
beach and the “snow” in the skiing image, it is not enough to
distinguish them merely by the color feature. If the texture fea-
tures are also incorporated, they can be discriminated into cor-
rect classes while the “sand” has the coarser texture and the
“snow” has the finer one.

In DT-HMM, given a state , the observation is
generated according to a certain distribution . In
this paper, we use GMM as this observation distribution. In
the multi-modal setting, the observation has feature
cues from different sources. We assume these
types of features can be generated independently once the
corresponding state is given, that is

(4)

where is the mixing coefficient, the mean vector,
and covariance matrix of th Gaussian component for the

th modality, respectively, given the current state is . For
simplicity, the covariance matrix is assumed to be diagonal.
Fig. 3(b) illustrates such a multi-modal DT-HMM structure. It
is worth noting that the independence assumption only holds
given hidden states are fixed, and for the whole 2-D observation,
such independence assumption does not hold across different
modalities, i.e., . This
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means one feature modality has some statistical dependency
on others, so these multiple types of the features can have an
effect on each other.

III. JOINT APPEARANCE-SPATIAL DISTANCE

BETWEEN DT-HMMS

In this section, we will propose how to measure a joint ap-
pearance-spatial distance between two images represented by
DT-HMM models.

A. Distance Between Models

DT-HMM can be used to jointly encode the appearance
and spatial structure. If a proper distance is computed be-
tween DT-HMMs, the appearance-spatial discrimination can
be measured across the images. From information theory,
Kullback-Leibler divergence (KLD) [11] is a natural distance
measure between the statistical models.

Specifically, the DT-HMM can be specified completely
by the parameter set , where
is the initial state distribution; is the horizontal
and vertical transition matrix with

are the parameters for the observation distribution specified
in (4). Then the joint distribution of the 2-D observation

and
state is

(5)

and the 2-D observation distribution can be obtained by sum-
marizing as

(6)

Now the KLD between two DT-HMMs is

(7)

However, there exists no closed-form expression for the KLD
between these two DT-HMMs. The most straightforward ap-
proach to computing this KLD is to use the Monte Carlo simu-
lation. But that will result in a significant computational cost. In
this section, we will present an alternative approximation ap-
proach that can be computationally more efficiently than the
Monte Carlo approach. This approach is inspired to compute
a KLD upper bound between the models [12], [13] by utilizing
the following log-sum inequality that has been widely used in
information theory [11].

Lemma 1: Given two mixture distributions
and , the KLD between them is upper bounded
by

(8)

where . This inequality di-
rectly follows the log-sum inequality (see [11, p. 31]).

This inequality was first used in [14] and in this paper, we will
extend it to compute the KLDs between the above DT-HMM
models. Let be the sub-tree rooted at position , and

be the probability that the portion of the image is covered
by with the state in position . Then the whole 2-D
observation distribution is

(9)

Accordingly, the KLD between two DT-HMMs is then

(10)

The inequality comes from the Lemma 1. The term
in the right-hand side can be com-

puted recursively based on an extension of Baum-Welch
algorithm by considering the following cases [see Fig. 3(a)].

Case 1: If is a leaf in that has no child node [see
Fig. 4(a)]:

(11)

For simplicity of the notation, we denote and
by and , respectively. Substituting

(4) into the above equation, the KLD can be computed as

(12)

where . Here, the
second equality follows the chain rule for KLD [11] and the
inequality comes from the lemma.

Case 2: If has only an horizontal successor [see
Fig. 4(b)], we have the following recursive equation:

(13)
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Fig. 4. Four different cases in the DT-HMM structure. (a) Node with no suc-
cessor. (b) Node with horizontal successor. (c) Node with vertical successor. (d)
Node with both horizontal and vertical successor.

thus, we have

(14)

where accounts
for the discrimination information of the horizontal spatial
structure between the two images. The first equality follows the
chain rule for KLD and the inequality comes from the lemma.

Similarly, if has only a vertical successor [see Fig. 4(c)],
we have

(15)

Similarly, ac-
counts for the discrimination of the vertical spatial structure
between the two images.

Case 3: The last case is that has both a horizontal and
a vertical successors [see Fig. 4(d)], so we have

(16)

Then

(17)

Note that, since DT-HMM has a tree structure, the two sub-
trees and have no common nodes.
Therefore, the two distributions and

are independent. Thus, in the first
equality, we can apply the chain rule for KLD. The inequality
still follows the lemma.

Finally, the KLD between the two -dimensional normal dis-
tributions in the above equations has a closed-form
expression:

(18)

B. Further Discussions

There are still two issues that need to be considered when
computing the joint distance between DT-HMMs:

1) Once the structure variable in (2) for DT-HMMs is given,
the above KLD is computed with this fixed structure. How-
ever, the complete likelihood of DT-HMM given an image
is

(19)

where the summation is taken over all possible tree struc-
tures. Here, all dependency trees are supposed to be equally
likely so that is uniformly distributed. The summation
on the right-most term cannot be exhaustively computed
by enumerating all possible trees. However, as proven in
[10], it can be estimated efficiently by generating only a



QI et al.: IMAGE CLASSIFICATION WITH KERNELIZED SPATIAL-CONTEXT 283

Fig. 5. Two dual DT-HMM structures.

few trees and averaging over their likelihood. More specif-
ically, the complete likelihood can be effectively computed
over two dual trees and [10], i.e.,

(20)

where is the dual tree of , defined by replacing hori-
zontal by vertical dependencies and vice versa, except for
the boundary constraints. This formulation introduces both
horizontal and vertical dependencies for all neighbor pairs
in the 2-D observation. Fig. 5 illustrates two DT-HMMs
with dual structures. It has been proven in [10] that such
a dual approximation has a satisfactory performance com-
pared to the approach by averaging over a large number of
trees. Accordingly, the KLD between is

(21)

where and are the KLD be-
tween and given the structure and its dual , respec-
tively. Here, the above inequality still follows the lemma.
From Fig. 5, we can find these two dual structures covers all
possible horizontal and vertical spatial structures and thus
can give a complete spatial discriminative information be-
tween .

2) The KLD is not a symmetric measure. We use the following
standard symmetric version as the distance measure when
implementing the algorithm:

(22)

Once the symmetric KLD is computed, a kernel can be
obtained accordingly. Here, we simply exponentiate the
symmetric KLD, i.e.,

(23)

where is the kernel radius. Note that we use an upper
bound to approximate the true KL distance between two
DT-HMMs; thus, their corresponding kernel matrix from

Fig. 6. Adapting each individual DT-HMM from a universal reference model.
Such an adaption can give a reasonable correspondence of hidden states between
two different DT-HMM.

(23) may not be positive-definite. However, there are many
solutions to address this problem. For example, in [15],
they suggest to compute the smallest eigenvalue of the
kernel matrix, and if it is negative, its absolute value can be
added to the diagonal of the kernel matrix. This method can
be justified as follows. The kernel matrix can be explained
intuitively as similarities between images. Adding a posi-
tive value to the diagonal only enhances “self-similarities”
and it does not affect the similarities among images. More-
over in practice, we have found the obtained kernel matrix
often satisfies the positive-definite condition because the
computed upper bound of KLD between images is tight
enough to the true KLD.
Such a kernel can be applied into a kernel-based classifier.
In this paper, we use multi-class SVM [16] for image cat-
egorization under the one-versus-the-rest rule: a classifier
is learned to separate each class from the rest and the test
image is assigned the label of the classifier with one highest
score.

3) Here, we analyze the complexity to compute the above dis-
tance measure between images. According to the above
recursive rules in (10), (12), (14), (15), (17), and (18),
the KLD between two DT-HMMs can then be recursively
computed in the reverse order, starting from the leaf node
until (1, 1). It is not difficult to verify that the computational
cost for this upper bound is mainly from computing all the

, and the computation complexity is
which scales well to 2-D observation size . Thus, this
distance can be tractably computed.

IV. ADAPTING DT-HMM FROM A UNIVERSAL

REFERENCE MODEL

As stated in Section III, we use an upper bound to approxi-
mate the intractable exact KLD between two DT-HMMs. These
two models have the same state number . However, since they
are trained independently on their own images, the correspon-
dence between their respective states may not be in the same
order from 1 to . Such a disaccord between the states in the two
models can lead to an upper bound that is not tight enough. To
obtain a tighter bound, as illustrated in Fig. 6, we can first train a
universal reference model (URM) from referential images, e.g.,
background images or images from a training set. Then given
an image, its DT-HMM can be adapted from this URM. Since
the models are all adapted from this URM, the states will have a
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reasonable correspondence between two models. Thus, the ob-
tained upper bound will be much tighter than that computed
from the independently-trained models.

In this paper, the standard maximum a posteriori (MAP) tech-
nique [17] is use to adapt the DT-HMM. Formally, given the
parameters of the URM and 2-D observation of the
new image, we estimate the new DT-HMM . We use
as the initial parameter. As suggested in [17], the standard ex-
pectation-maximization (EM) algorithm is then applied to up-
date repeatedly until convergence except for the mean vector
of GMMs, i.e.,

(24)

where indicates the mixture component for the th
modality given the state is at position , and is the
weighting factor giving the bias between the previous estimate
and the current one. We will set to be 0.7 in the experiment.
The update rules for all the other parameters follow the EM
algorithm.

V. EXPERIMENTS

In this section, we will conduct extensive experiments to
compare the proposed approach against the original DT-HMM
proposed in [10] and the other two best representative kernel
methods: multiple-instance learning via embedded instance
selection (MILES) [18] and spatial pyramid matching (SPM)
[19]. MILES is a bag-of-word algorithm which does not model
the spatial context of local patches. Its source code is publicly
available at http://john.cs.olemiss.edu/ychen/data/MILES.zip.
On the other hand, similarly, SPM represents the state-of-the-art
kernel-based image categorization algorithm, where it models
the spatial context by using the geometric correspondence to
match the spatial layout of the local features.

For all the three approaches, there are algorithmic parameters
that need to be determined. To ensure a fair comparison, all the
parameters in all three approaches are determined by a twofold
cross-validation process on training set. The reported results are
from the best set of parameters in the three approaches. The
comparison is conducted on two widely used data sets, one gray-
scale (the scene data set) and one color (the Corel data set).

A. Natural Scene Image Classification

The first data set is one of the most complete scene category
dataset in the literature [19], [20]. It is composed of 15 grayscale
scene categories: 13 were provided by Li et al. in [20], and the
other two were collected by Lazebnik et al. in [19].

For the experiment, we follow the same setup in SPM [19].
Namely, we randomly select 100 images per class for training
and the rest for testing. All the images from the training set are
used to train a URM model. All experiments are repeated ten
times with different training and testing images, and the average
of per-class classification accuracy is reported. The experiments
reported in SPM [19] are conducted with the SIFT descriptor.
For the sake of fair comparison, comparison between MILSE,

TABLE I
AVERAGE CLASSIFICATION ACCURACIES (%) FOR THE THREE

ALGORITHMS ON 15 SCENE DATASET

SPM and the proposed approach is using SIFT, too. Specifically,
the 128-dimemsional SIFT descriptor is processed by principal
component analysis (PCA) to reduce its dimensionality to 50.
Regarding training the DT-HMM model, all the images in each
category are used to train an individual model for this category
base on maximum likelihood criterion. In testing phase, predic-
tion is made by assigning to each testing sample the category
with maximum probability given by the associated model.

To ensure meaningful comparison, we use extra care when
extracting features, trying to maximize the strength for each ap-
proach. For SPM, DT-HMM, and the proposed algorithm, the
SIFT are computed in 16-by-16 pixel patches over a grid with
spacing of 8 pixels. As for MILES, we follow its original way
of extracting features [18] to ensure its best performance. First,
salience regions are identified using the approach introduced
in [21], which detects regions that are salient over both loca-
tion and scale. Each salient region is cropped from image and
also scaled to an image patch with a size of 16-by-16 pixel,
from which the features (SIFT and CM) are extracted. We also
report and compare the results of the algorithm proposed by
Li et al. [20].

The results are shown in Table I and are consistent with our
analysis in the paper: the proposed approach has obtained the
best performance of all the four algorithms. Compared to the
original DT-HMM algorithm, it improves its accuracy by 29.7%
from 67.1% to 87.0%. In most natural scene categories, it is
usually difficult for the traditional DT-HMM to find a common
spatial structure to describe and represent all the images of this
category. In contrast, the superior performance of the proposed
approach probably comes from its ability to capture the large
intra-class variance in the natural scene image dataset. On the
other hand, the proposed approach also outperforms MILES be-
cause it takes spatial structure into account, as well as SPM be-
cause it follows the least commitment principle and the distance
measure is based on an integrated joint appearance-spatial fea-
ture. Therefore, from this experiment, the proposed approach
has been proven to outperform the traditional spatial contextual
model like DT-HMM but also outperform the other compet-
itive kernel-based image categorization method such as SPM
and MILES. In the next section, we will conduct experiments
to compare these algorithms on a complex hybrid scene/object
image dataset.

Finally, we compare the times spent on computing KL dis-
tances between DT-HMM by the typical Monte Carlo method
and the proposed approach under the above experimental set-
ting. We conduct the experiments on a computer with 3 GHz
CUP and 1 GB memory. On average, Monte Carlo method uses
150 ms for computing KL distance between a pair of DT-HMM
while the proposed approach uses 20 ms. It nearly accelerates



QI et al.: IMAGE CLASSIFICATION WITH KERNELIZED SPATIAL-CONTEXT 285

Fig. 7. Classification accuracy over all the 50 categories on the modality of color moment.

the computation by one order of magnitude. We also compare
the prediction times made by MILES, SPM, and the proposed
approach which are all kernel-based algorithms. They spend
10.7 ms, 2.1 ms, and 6.2 ms on average to predict a sample.
We can find SPM uses the least time to predict since it uses a
code-book-based method, while MILES and the proposed algo-
rithm spend a little more time to compute the kernel function
between the testing sample and the support vectors. But as for
the proposed method, the compensation is a better classification
accuracy as shown in Table I.

B. Hybrid Scene/Object Image Classification

1) Dataset and Experiment Setup: The second data set is a
hybrid object/scene data set from the Corel image collection.
Different from many other widely-used Corel datasets which
are probably the most widely used [22], this Corel dataset con-
sists of 50 semantically diverse categories with 100 images per
category. In these 50 categories, 37 of them contain a certain
target object for recognition; the other 13 categories have im-
ages for natural scenery. It is a challenging data set because:
1) it has many variations in illumination, occlusion, viewpoint
change, cluttered backgrounds, etc.; 2) for the object categories,
an image often contains more than one targeted objects and
the objects usually do not locate at the center of the image; 3)
for the natural scene categories, the images in the same cate-
gories often vary significantly in appearance, spatial layout, and
lighting conditions.

During the experiment, the images in each category are ran-
domly split into five parts of equal size. We successively use
each of the five parts as testing set, and the others are used for
training. The URM model is trained from all the images in the
training set. The average classification accuracies over these five
different testing set is then reported for evaluation.

Because the Corel data set is a color image set, we extract the
color moments (CM) features in addition to the SIFT features.
Before extracting CM, it is advantageous to convert the images
into a perceptual-sensible color space, such as CIE Luv space.
The first to third moments of each band are computed, respec-
tively, on the local patches of the image. We therefore have 9-D
CM features.

2) Performance Comparison With Previous Methods:
Table II shows the average classification accuracies for the
three algorithms over all the 50 image categories. Similar

TABLE II
AVERAGE CLASSIFICATION ACCURACIES (%) FOR MILES, SPM, AND THE

PROPOSED ALGORITHM ON TWO MODAL FEATURES CM AND SIFT

observations can be obtained as in Section V-A. The proposed
approach outperforms the traditional DT-HMM algorithm. It
improves its accuracy by 19.3% and 34.0% on color moment
and SIFT modalities, respectively. This result is consistent
with our expectation that the proposed approach can capture
large intra-class variances in the image categories due to dif-
ferent object views or various spatial layout in different natural
scenes. To show it, we illustrate the top 10 “support vectors”
with the largest coefficients for “car” in Fig. 9. We can find
that many different views of this object have been included into
this prototype set of spatial contextual models. It reveals the
underlying reasons that lead to the better performance of the
proposed approach.

On the other hand, among all the kernel-based algorithms,
SPM outperforms MILES because it takes spatial structure into
account. The proposed approach outperforms SPM because it
follows the least commitment principle and the distance mea-
sure is based on an integrated joint appearance-spatial feature.
Furthermore, CM outperforms SIFT, as compared to the other
researchers’ results [23]. However, it is true that the results usu-
ally depend on the specific dataset used for testing the algorithm,
where different features have different performance on different
datasets [24], [25].

We also illustrate the classification accuracy of all the 50 cat-
egories on the color moment and SIFT modalities in Figs. 7 and
8, respectively. The proposed approach obtains the best perfor-
mance over 41 and 33 categories on color moment and SIFT
modality, respectively.

3) Classification Results on Multi-Modal Features: Finally
we also do experiment by combining these SIFT and CM
feature cues by using the multi-modal DT-HMM proposed in
Section II-C. In Fig. 10, we illustrate the confusion matrix on
this Corel collection with combined features. As we can see,
the classification accuracy is further improved to be 77.3%.
This result justifies such a multi-modal strategy can improve
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Fig. 8. Classification accuracy over all the 50 categories on the modality of the SIFT.

Fig. 9. Top ten images acting as support vectors with the largest coefficients in
MILES, SPM, and the proposed approach, which are shown under each image.
From this figure, we can find in the proposed approach, among these support
vectors, different views of “car” with large intra-class variance have been in-
cluded to form a prototype set of the spatial context for the category “car”.

Fig. 10. Confusion matrix on hybrid scene/object data set from Corel collection
with the multiple feature cues. The average classification accuracy on these 50
concepts is 77.3%.

the discrimination ability compared to the single-modal one
(72.4% on CM modality and 56.0% on SIFT modality).

VI. CONCLUSION

In this paper, we propose a kernelized spatial contextual
model to jointly representing and classifying images in an
integrated framework. In contrast to the traditional 2-D HMM
which attempts to use one single model to represent the images
in one class with large intra-class variance, we construct a pro-
totype set of images by embedding the spatial contexts into the
kernelization algorithm. Moreover, these prototypes contains
the complete information to distinguish one class of images
from the others. Therefore, such an algorithm combines the
advantages of rich representation ability of spatial contextual
models as well as the powerful classification ability of kernel
method.

To embed the spatial model into kernel method, we propose to
design a similarity measure between them. This similarity mea-
sure is computed by computing the model distances between
different images. The distance measures used in most existing
approaches either ignored the spatial structures or used them in
a separate step. To address these difficulties, in this paper, we
proposed a new distance measure that integrates joint appear-
ance-spatial image features. In addition, multiple modal features
can be incorporated into this distance measure to help improve
the discrimination ability across multiple features. We further
proposed an efficient algorithm to compute this distance. Its
upper bound can be further tightened by adapting a universal
reference model into individual probabilistic models. Extensive
experiments on two image data sets demonstrate that the pro-
posed approach outperforms the state-of-the-art approaches in
both scene and object images.
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