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ABSTRACT
As image feature vector is large, selecting the right features
plays a fundamental role in Web image annotation. Most
existing approaches are either based on individual feature se-
lection, which leads to local optima, or using a convex penal-
ty, which leads to inconsistency. To address these difficulties,
in this paper we propose a new sparsity-based approach NO-
VA (NOn-conVex group spArsity). To the best of our knowl-
edge, NOVA is the first to introduce non-convex penalty for
group selection in high-dimensional heterogeneous features
space. Because it is a group-sparsity approach, it approxi-
mately reaches global optima. Because it uses non-convex
penalty, it achieves the consistency. We demonstrate the
superior performance of NOVA via three means. First, we
present theoretical proof that NOVA is consistent, satisfy-
ing un-biasness, sparsity and continuity. Second, we show
NOVA converges to the true underlying model by using a
ground-truth-available generative-model simulation. Third,
we report extensive experimental results on three diverse
and widely-used data sets Kodak, MSRA-MM 2.0, and NUS-
WIDE. We also compare NOVA against the state-of-the-art
approaches, and report superior experimental results.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval; I.4.7 [Image Processing and Com-
puter Vision]: Feature Measurement—feature representa-
tion

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
The number of Web images already reached the order of

100 Billion. Out of these images, however, only a limited
percent are annotated. Developing an effective way to accu-
rately annotate the Web images automatically are therefore
of great importance. While an image is worth a thousand
words, it is also true that we can extract a large number,
sometimes even more than a thousand, of visual features
from an image. These features may include global features,
e.g., color, texture and shape, and local features, e.g., SIFT,
Shape Context and GLOH (Gradient Location and Orienta-
tion Histogram) [25]. The size of the concatenated feature
vector can be large, but only a subset of features carry the
biggest discriminating power. As a result, selecting the right
features plays a fundamental role in image annotation with
high-dimensional features.

Motivated by the recent advance in compressed sensing,
sparsity-based feature selection approaches are developed in
both machine learning and multimedia communities [27].
The basic idea of sparsity-based feature selection is to em-
ploy regularizers to induce sparsity during discriminative
feature selection. Depending on if the feature selection is
based on individual or group features and if the regularizers
are convex or non-convex, the existing approaches can be
categorized into four quadrants, as shown in Table 1, e.g.,
convex individual-sparsity, convex group-sparsity, nonconvex
individual-sparsity, nonconvex group-sparsity.

• The lasso (least absolute shrinkage and selection op-
erator) [24] and nonnegative garrote [4] fall into the
first quadrant (i.e., convex individual-sparsity), which
deals with individual feature selection using a convex
relaxation such as the �1-norm.

• The group lasso [30], sparse group lasso [15], com-
posite absolute penalty (a generalization of the group
lasso)[33], exclusive group lasso [34], and overlapped
group lasso [18] are in the second quadrant (i.e., con-
vex group-sparsity) which model the features as group-
s, but still use a convex relaxation.
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• Residing in the fourth quadrant (i.e., nonconvex individual-
sparsity) are the smoothly clipped absolute deviation
(SCAD) [12], adaptive lasso [35], log-sum penalty [6],
pseudo lq-norm with q < 1 [16], and the minimax con-
cave (MC) penalties [32]. While they utilize a non-
convex penalty to obtain prediction consistency, it only
works on top of individual features.

• Note that approaches in quadrant 3 (i.e., nonconvex
group-sparsity) are still missing.

While good progress has been made over the years in vari-
ous domains and applications, the above mentioned existing
approaches in quadrants 1, 2 and 4 suffer from one or both
of the following difficulties.

• Note that the original high-dimensional heterogeneous
features are inherently partitioned into different group-
s, e.g., color vs. SIFT, and different groups of fea-
tures describe different aspects of visual characteris-
tics. That is, the Web image annotation problem is
inherently the problem of selecting grouped variables
(features) for accurate prediction in regression, a clas-
sic statistical problem as described in [30]. Differen-
t groups of features have different intrinsic discrimi-
native power to characterize the high-level semantics
for different images [7][9][28][17]. Approaches in quad-
rants 1 (convex individual-sparsity)and 4 (nonconvex
individual-sparsity) are designed for selecting individ-
ual features, not for group features as in Web image
annotation. They make selection based on the strength
of individual features instead of the strength of groups
of features, which result in selecting unnecessary fea-
tures. Furthermore, they lead to local optimal instead
of the global one – depending on how the features
orthonormalized, they converge to different solutions
[30].

• Because approaches based on convex regularizers, i.e.,
the approaches in quadrants 1 (convex individual-sparsity)
and 2 (convex group-sparsity), are computationally ef-
ficient, and are very popular [24][4][30][15][18]. Howev-
er, they do not lead to consistent prediction. That is,
the correct sparse subset of the relevant features can-
not be identified asymptotically with large probability
[21][26].

As pointed out in [12][36], the lasso as well as other
lasso-type methods are sub-optimal in model selection
due to their convex relaxation, which is prone to in-
ducing inconsistent estimates for the data with high-
dimensional features. Because lasso both shrinks and
selects, it often relaxes the penalty on the relevant fea-
tures. Furthermore, in Wei et al.’s work [26], they
derived a similar theoretical proof that group lasso in
general is not selection consistent.

Given the data x with p input features, x = (x1, . . . , xp)
T

∈ R
p, the interesting question is whether there is a true

model that can select all the necessary features from x
to denote its corresponding semantic. Assume a true
(an oracle) model can be found to select out the fea-
tures from x and the coefficients of the selected features
are denoted as A = {m : β∗

m �= 0} and |A| = p0 < p.

If β̂(δ) is the estimated coefficients produced by a fit-
ting procedure δ, the question is whether the selection
result by δ is the same as that of the result by the

true model. According to [12][35], δ is called an oracle

model to produce a consistent selection result if β̂(δ)
has the following oracle properties: δ can identify the
correct subset, {m : β̂j �= 0} = A; and δ has the op-
timal estimate rate. This oracle properties imply that
the penalty function must be singular at the origin and
non-convex over (0,∞).

To address the above two key difficulties, in this paper we
propose a brand new approach, filling the empty space in
the third quadrant (nonconvex group-sparsity). We call it
NOVA (NOn-conVex group spArsity). Figure 1 illustrates
the algorithm flow of our proposed NOVA, including fea-
ture extraction, feature selection and image annotation. In
Figure 1, we can see NOVA can select out the importan-
t groups of features for image annotation. The strength
of the proposed NOVA endows the feature space with ad-
ditional group structure into a non-convex regularizer for
consistent group selection due to its oracle properties. To
the best of our knowledge, NOVA is the first to introduce
non-convex penalty for group selection in high-dimensional
heterogeneous features space.

The rest of the paper is organized as follows. In Section
3, we present detailed algorithm of NOVA, including prob-
lem formulation and step-by-step derivation. In Section 4,
we give theoretical proof that NOVA is consistent, satisfy-
ing un-biasness, sparsity and continuity. Complementing to
the theoretical proof, we also report extensive experimental
results in Section 5 via three diverse and widely-used data
sets.

2. NON-CONVEX GROUP SPARSITY FOR
FEATURE SELECTION

2.1 Notation
Suppose we are given a set of training data with n im-

ages and C labels {(xi,yi) ∈ R
p × {−1, 1}C : i = 1, . . . , n},

where xi = (xi1, . . . , xip)
T ∈ R

p represents a p-dimensional
feature vector for the ith image, and yi = (yi1, . . . , yiC)

T ∈
{−1, 1}C is a C -dimensional label vector. Here, we assume
yij = 1 if the ith image has the jth label and yij = −1
otherwise. Since different types of features can be extracted
from images, we further assume that the p features are di-
vided into G disjoint groups. Therefore, the feature vector
of the ith image xi can be rewritten as xi = (xi,1; . . . ; xi,G)
where xi,g ∈ R

dg (g = 1, . . . , G) is the gth feature vector of

this image, and
G∑

g=1

dg = p.

Let X = (x1, . . . ,xn)
T be the n× p training data matrix,

and Y = (y1, . . . ,yn)
T the corresponding n × C label indi-

cator matrix. In the following, we assume that the feature
matrix X is centered.

2.2 Problem Formulation
For each label c ∈ {1, . . . , C}, we aim to estimate the

vector of regression coefficients βc = (βc
1; . . . ;β

c
G) where

βc
g ∈ R

dg (g = 1, 2, ..., G) by minimizing the following ob-
jective function with a linear regression model:

l(βc) =
1

2n

n∑
i=1

(yic −
G∑

g=1

xT
i,gβ

c
g)

2 +

G∑
g=1

pλ(||βc
g ||2) (1)
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Table 1: Four paradigms of sparsity-based feature selection methods (i.e., convex individual-sparsity, convex
group-sparsity, nonconvex individual-sparsity, nonconvex group-sparsity)

group individual

convex

group lasso[30]
sparse group lasso [15] lasso[24]

overlapping group lasso [18]
exclusive group lasso [34] nonnegative garrote [4]

structural grouping sparsity[28]

nonconvex NOVA

SCAD [12]
adaptive lasso [35]
log-sum penalty [6]

pseudo lq-norm with q < 1 [16]
the minimax concave (MC) penalties [32]

where pλ(.) is the penalty function characterized by a tuning
parameter λ.

In this section, after the introduction of one of noncon-
vex individual-sparsity, e.g., smoothly clipped absolute de-
viation (SCAD) [12], we will describe how to introduce the
group structure into SCAD and define our proposed noncon-
vex group-sparsity peanly, e.g., NOn-conVex group spArsity
(NOVA).

SCAD was proposed in [12] to circumvent the weakness
of penalties with a convex relaxation and had interesting
theoretical properties to induce a consistent selection result.
SCAD is defined as follows

pλ(|βj |) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ|βj |, if |βj | ≤ λ;

− (|βj |2 − 2aλ|βj |+ λ2)

2(a− 1)
, if λ < |βj | ≤ aλ;

(a+ 1)λ2

2
, if |βj | > aλ;

where a > 2 and λ > 0 are tuning parameters.
The SCAD penalty corresponds to a quadratic spline func-

tion with two knots at λ and aλ, leaves large values of βj

not excessively penalized and makes the solution continuous
[12]. Fan and Li [12] showed that the penalized likelihood
estimators perform as well as the oracle procedure in terms
of selecting the consistent features, when the regularization
parameter is appropriately chosen. The significance of the
oracle procedure is that the proposed procedures outperfor-
m the maximum likelihood estimator and perform as well
as we expect. They also showed that the Bayesian risks are
not very sensitive to the values of a and suggested to use
a = 3.7, which was also used in this paper.

Traditional nonconvex individual-sparsity SCAD does not
encode group structure during feature selection. In the real
world, given one image, we can obtain p-dimensional hetero-
geneous features and these p-dimensional features are nat-
urally partitioned into G disjoint groups. Similar to convex
group-sparsity penalty group lasso [30], we tend to intro-
duce the group structure into SCAD for consistent selection
of group features. Here we use an �2,1-norm ||βc

g ||2 to sub-
stitute the �1-norm |βj |. The �2,1-norm encourages sparsity
at the group level. In other words, if the coefficients in βc

g

are non-zero, the gth group of features are all selected out
to make the cth label discernible. On the contrary, some
groups of features may be dropped out if the coefficients
in βc

g are equal to zeros. Thus we can extend nonconvex
individual-sparsity SCAD to nonconvex group-sparsity NO-

VA as follows

pλ(||βc
g ||2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ||βc
g||2, if ||βc

g||2 ≤ λ;

− (||βc
g||22 − 2aλ||βc

g||2 + λ2)

2(a − 1)
, if λ < ||βc

g||2 ≤ aλ;

(a + 1)λ2

2
, if ||βc

g||2 > aλ;

for g = 1, . . . , G and c = 1, . . . , C.
Some other convex group-sparsity methods such as group

lasso [30] or group LARS [11] end up shrinking the coeffi-
cients more for the good variables to induce sparsity. If these
selected good variables are strongly correlated, this effect is
exacerbated, and may mistakenly include other variables to
this model. On the contrary, the proposed nonconvex group-
sparsity method NOVA can overcome these drawbacks and
give rise to the consistent group selection compared with
group lasso or group LARS.

2.3 Algorithm and Group Selection
The nonconvex group-sparsity penalty NOVA is singular

at the origin and does not have continuous second order
derivatives. In order to solve the non-convex penalized re-
gression problem, we use the following local quadratic ap-
proximation (LQA):

p′λ(|βj |) = p′λ(|βj |)sgn(βj) ≈ {p′λ(|βj |)/|β(0)
j |}βj

where β
(0)
j is an initial value of βj and β

(0)
j �= 0. That is to

say,

pλ(|βj |) ≈ pλ(|β(0)
j |) + 1/2{p′λ(|β(0)

j |)/|β(0)
j |}(β2

j − β
(0)2
j )

for βj ≈ β0
j .

(2)
To avoid numerical instability, Fan and Li [12] suggested

that if |βj | in (2) is very close to 0, say |βj | < ε0 (a pre-
specified value), then set βj = 0 and delete the jth compo-
nent ofX in the iteration. A drawback of this approximation
is the backward stepwise variable selection: if a covariate is
deleted at any step in the LQA algorithm, it will necessari-
ly be excluded from the final selected model. Furthermore,
one has to choose ε0, which practically becomes an addi-
tional tuning parameter. The value of ε0 potentially affects
the sparsity degree of the solution as well as the speed of
convergence.

In our algorithm, a similar quadratic approximation is
used by substituting |βj | with ||βg ||2, g = 1, . . . , G. The
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Figure 1: System overview of our proposed NOVA framework for multi-label image annotation. The NOVA
can select the groups of features and train the image annotation model simultaneously.

non-convex penalty pλ(||βg ||2) can be approximated as

pλ(||βg ||2) ≈ pλ(||β(0)
g ||2) + 1/2{p′λ(||β(0)

g ||2)/||β(0)
g ||2}

(βT
g βg − (β(0)

g )Tβ(0)
g ), for βg ≈ β0

g ,

and the Newton-Raphson algorithm can be conducted.
Under this approximation, the equation (1) is transformed

as

min
βc

1

2n
(Y −Xβc)T (Y −Xβc) +

1

2
(βc)TΣβc (3)

where

Σ =diag{p′λ(||βc(0)
1 ||2)/||βc(0)

1 ||2eTd1 , . . . ,
p′λ(||βc(0)

G ||2)/||βc(0)
G ||2eTdG}

(4)

is a p × p matrix. Each item p′λ(||βc(0)
g ||2)/||βc(0)

g ||2 of Σ
is repeated dg times where dg is the dimension of the gth
feature as aforementioned.

The penalized equation (3) is a quadratic problem and
can be solved by

(XTX + Σ)βc =
1

n
XTY (5)

We summarize the proposed algorithm in Algorithm 1.
As in the maximum likelihood estimation (MLE) setting,

with the good initial value βc(0), the one-step procedure can
be as efficient as the fully iterative procedure, namely, the

Algorithm 1: Group Selection with NOn-conVex
group spArsity (NOVA)

1 For each label c (c = 1, 2, ..., C) do

2 Initialize βc(0);
3 For k = 1, . . .

Obtain Σ(k) by (4) and solve βc(k) by (5) until
convergence;

end
4 For g = 1, . . . , G if ||βc

g ||2 < ε1
Set βc

g = 0.
end

penalized maximum likelihood estimator, when the Newton-
Raphson algorithm is used [2]. Therefore, in the initializa-
tion step, we utilize a ridge regression to get an approximate
initial estimation of βc. In step 4, if some ||βc

g ||2 is very close
to zero, that is to say, smaller than a certain threshold ε1,
we set βc

g = 0 and treat the gth group of features irrelevant
with the cth label. In our algorithm, we set ε1 to 10−3.

2.4 Multi-label Boosting for Annotation
The introduction of correlations between multiple tags can

improve the performance of multi-label annotation. As one
of approaches to learn the correlations between two vari-
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Algorithm 2: Multi-label Boosting by Structured
Sparse Canonical Correlation Analysis (S2C&W )

1 Perform structured sparse canonical correlation analysis
on selected features X and labels Y ;
2 Output uxi and vyi (i = 1, 2, . . . , C);
3 Compute ρi and si by (6) and (7);
4 Form matrix S = diag(s1, . . . , sC);
5 Form matrix V = (vy1 , . . . , vyC )T ;
6 Compute matrix B = V −1SV ;
7 Compute the estimated indicators Ỹ = Ŷ B.

ables, the curds and whey (C&W) [5] has been conducted
for multi-label annotation[29] [28]. C&W builds up the con-
nection between multiple response regression and canonical
correlation analysis, and can be used to boost the perfor-
mance of multi-label prediction given by the prediction re-
sults from the individual regression of each label.

Let β = (β1, . . . , βC) ∈ R
p×C be the coefficient vector

output by Algorithm 1, and we can get the predicted vector
Ŷ = Xβ. According to [5][23], a more accurate prediction

Ỹ can be inferred by a linear combination Ỹ = Ŷ B after the
introduction of the significant correlations between labels.

We can derive the estimates of the matrix B ∈ R
C×C that

take the form B = V −1SV where V is the C × C matrix
whose rows are the label canonical coordinates output by
canonical correlation analysis (CCA) and S = diag(s1, . . . ,
sC) is a diagonal shrinking matrix which can be estimated
by a generalized cross-validation (GCV) approach.

The solution by [5] of si is

si =
ρ2i

ρ2i + γ(1− ρ2i )
(6)

with

ρi =
uT
xi
XTY vyi√

(uT
xi
XTXuxi)(v

T
yiY

TY vyi)
(7)

and γ = p/n. The matrix V can be expressed as V =
(vy1 , . . . , vyC )T . Different from traditional curds and whey
(C&W) method, the label canonical coordinates uxi and vyi
are obtained by the the structured sparse canonical correla-
tion analysis [8] in this paper, referred as S2C&W , since we
can incorporate the rich prior structural information among
label space. We summarize the multi-label annotation by
S2C&W in Algorithm 2.

3. JUSTIFICATION ON CONSISTENCY
The consistent selection of groups of features is a major

concern in this paper. This section provides both theoretical
and experimental evidence that our NOVA does produce a
consistent group selection without compromising classifica-
tion accuracy or computational efficiency.

3.1 The Oracle Properties of NOVA
A good penalty that induces consistent feature selection

should result in an estimator with an oracle property: un-
biasedness, sparsity and continuity [12]. That is to say, the
penalty function is bounded by a constant to produce near-
ly unbiased estimates for large coefficients, be singular at

the origin which is also said to be a thresholding rule of the
resulting estimator to produce sparse solutions, and be con-
tinuity by certain conditions, which is also said to be stable
of the model.

Now we consider the first order derivative of pλ(||βc
g ||2)

with respect to βc
g , which is

p′λ(||βc
g ||2) = λ{I(||βc

g ||2 ≤ λ)+
(aλ− ||βc

g ||2)+
(a− 1)λ

I(||βc
g||2 > λ)}.

The oracle property of NOn-conVex group spArsity (NO-
VA) can be proved as

1. The sufficient condition for unbiasedness is that when
||βc

g ||2 is sufficiently large, p′λ(||βc
g ||2) = 0, which is

obvious satisfied.

2. The sufficient condition for the thresholding rule is
that the minimum of the function ||βc

g ||2+p′λ(||βc
g ||2) is

positive, which is satisfied with the assumption a > 2.

3. The sufficient and necessary condition for continuity is
that the minimum of the function ||βc

g ||2 + p′λ(||βc
g ||2)

attained at 0. Obvious this condition can be satisfied
when ||βc

g ||2 = 0.

The proposed NOVA in equation (1) solves a quadratic
optimization problem (equation (3)), which can be solved
by equation (5) with a global solution. As illustrated in
references [30] and [36], the individual feature selection is
often trapped into a local optimal solution rather than the
global optimal one.

3.2 Complexity of NOVA
The computational complexity is crucial for the successful

application of an algorithm. The complexity of group lasso
is O(p+ kln(G)) where p is the dimension of data, G is the
number of groups, and k is the sparsity number which means
the features selected out by the algorithm. From the descrip-
tion of Algorithm 1, we can see the main time-consuming
operations are the initialization step and the solving process
of equation (4) and (5) whose computational complexity is
O(np2) where n is the sample size of data. So the complexity
of NOVA is roughly O(np2) which is the same as SCAD.

3.3 Consistent Group Selection on Synthetic
Data

In this section, we numerically compare our proposed non-
convex group-sparsity NOVA with its counterpart convex
group-sparsity group lasso [30] [1] in terms of consistent
group selection on the synthetic data.

We sampled X ∈ R
n×p from a normal distribution with

zero mean vector and a covariance matrix of size n = 200, p =
8 for G = 4 groups of size di = 2, i = 1, . . . , G. Then we
sampled Y from Y = Xβ + ε with the noise ε which is
generated from N(0, 1) and the regression coefficients β =
(β1, . . . , βG). For the indices of the 3rd and 4th groups, we
set the corresponding entries of β3 and β4 to be zero and
the other entries are sampled from i.i.d. N(0, 1).

In Figure 2, we plot the regularization paths correspond-
ing to the aforementioned synthetic data computed by NO-
VA and group lasso [30]. The left subfigure shows the values

of the estimated coefficients β̂i, i = 1, . . . , G with the chang-
ing parameter λ in equation (1). The right subfigure shows
the values computed by group lasso [1]. The dotted straight
lines are the paths of prior defined regression coefficients
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β, and the other four lines are the paths of predicted co-
efficients. Figure 2 illustrates that the non-convex NOVA
regularizer is more consistent for the selection of group of
features than the convex regularizer group lasso.

3.4 The Selection of Image Attributes
In recent years, Human-nameable visual attributes are

taken as middle-level features to improve the performance
of image classification [14][19]. To validate the effectiveness
of NOVA for image attributes selection, we conduct exper-
iments on the well-devised Animals with Attributes (AwA)
data set [19] which consists of 30475 images of 50 animals
classes with 85 numeric values of visual attributes for each
image. The visual attributes in AwA are manually labeled.
Different from the synthetic data, if the labeled attributes
are taken as predictors (features), we can psychologically
and physiologically judge whether the selected features are
consistent (true) or inconsistent based on the ground truth
in AwA.

In order to select the attributes of different classes, we de-
fine the input matrix X ∈ R

n×a and Y ∈ R
n×C where n is

the number of samples, a = 85 is the number of attributes
and C = 50 is the number of classes. We numerically com-
pare NOVA with Linear SVM and group lasso [24] for the
performance of feature (attribute) selection. Since there is
no explicit group information in the attributes of AwA, as
a special case of group lasso and NOVA, we consider the 85
different attributes as 85 groups which means the group size
dg = 1 for all g = 1, . . . , G.

In this section, we utilize the precision criterion to measure
the performance:

precision =
TP

TP + FP

where TP means the true positives, and FP means the false
positive.

We randomly select 1000 images for training, and the re-
maining for testing. This process is repeated ten times to
generate ten random training/test partitions, and we report
the average results with their variances in Table 2.

Figure 3 shows the selection results with the values of
exemplary attributes assigned to the corresponding classes.
Taking the manually labeled attributes as the ground truth,
it can be shown that the selected attributes by NOVA are
superior to the selected ones by group lasso.

4. MULTI-LABEL IMAGE ANNOTATION
This section is devoted to systematically evaluating the

effectiveness of our proposed NOVA for automatic multi-
label image annotation on real world data. Before presenting
the experiment results, we introduce the data sets as well as
the criteria used for evaluation.

4.1 Experiment Data Sets
To evaluate the performance of the proposed NOVA for

image annotation, we conduct experiments on two open bench-
mark image data sets, i.e., MSRA-MM 2.0 [20] and NUS-
WIDE [10], as well as a personal image collection, i.e., Ko-
dak [22].

The MSRA-MM 2.0 data set aims to encourage research
in multimedia information retrieval and related areas. The
images and videos in the data set are collected from internet
search engines. The NUS-WIDE data set is a real-world web

image data set from Flickr created by National University
of Singapore. We remove the images with zero label or one
label for our multi-label experiments. Images in these data
sets are associated with more than one labels and the labels
are used as ground truth for image annotation.

For each image in the data sets, we extract its heteroge-
neous features and concatenate those heterogeneous features
as a vector. Each kind of homogeneous features is taken as
a group. We describe the three evaluated data sets with the
number of groups in features which are provided by the data
set as follows:

• Kodak [22] with 3590 images and 22 labels: 657-D fea-
tures are divided into 7 groups. Namely, 144-D color
correlogram, 16-D co-occurrence texture features, 73-
D edge direction histogram, 7-D face features, 64-D
color histogram, 225-D block-wise color moments, and
128-D wavelet texture features.

• MSRA-MM 2.0 [20] with 42266 images and 100 labels:
899-D features are divided into 7 groups. Namely, 144-
D color correlogram, 75-D edge direction histogram,
7-D face features, 64-D color histogram, 225-D block-
wise color moments, 256-D RGB and 128-D wavelet
texture features.

• NUS-WIDE [10] with 209347 images and 81 labels:
1134-D features are divided into 6 groups. Name-
ly, 144-D color correlogram, 73-D edge direction his-
togram, 500-D bag of words, 64-D color histogram,
225-D block-wise color moments and 128-D wavelet
texture features.

4.2 Evaluation Criteria
The area under the ROC curve, called AUC, is used to

measure the performance of image annotation [13]. ROC
curve is used to characterize compromise relations between
TP and FP. A ROC curve is a two-dimensional depiction of
classifier performance which cannot be compared with each
other directly for their overlap. To compare classifiers we
may want to reduce ROC performance to a single scalar val-
ue representing expected performance. A common method
is to calculate the area under the ROC curve, abbreviated
AUC [3]. In this work, we use MacroAUC, MicroAUC scores
and precision to measure the annotation performance across
multiple labels.

4.3 Experiment Setup
For each data set, we randomly select 25 × C images for

training where C is the number of labels, and the remain-
ing for testing. During the sampling process, each label is
guaranteed to appear in at least one image. This process
is repeated ten times to generate ten random training/test
partitions, and we report the average results along with their
variances.

For each label c, we first perform NOVA to select groups
of features on the training data in order to obtain the best
discriminant groups of features for label c , and then we can
obtain the predicted vector Ŷ by the new feature vector with
some kinds of groups of features are dropped out and oth-
ers are kept for distinguishing different objects. Taking the
correlations and interdependent among labels into account,
we utilize the S2C&W method to improve the annotation
accuracy by Ỹ = Ŷ B.
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Figure 2: The regularization paths of NOVA and group lasso. Note that the ||β3||, ||β4|| are equal to zero, and
they are overlapped on the 0-line.

Table 2: Performance of image attributes selection in terms of precision

SVM group lasso NOVA
Precision 0.9289 ± 0.0054 0.9568 ± 0.0042 0.9784 ± 0.0156

4.4 Parameters Tuning
There are two parameters which need to be tuned for each

label. The first one is λ in (1), and the second one is α

in the ridge regression method for initializing βc(0). The
parameters are tuned by 5-folded cross-validation based on
MacroAUC for each data set.

We depict three examples of parameter tuning by the 5-
fold cross validation with respect to MacroAUC in Figure 4.
From this figure, we can see that the proposed algorithm is
insensitive to the parameters.

4.5 Performance Comparison
As discussed before, in general, there are four paradigms

of sparsity-based feature selection, namely, convex individual-
sparsity, convex group-sparsity, nonconvex individual-sparsity,
nonconvex group-sparsity. In order to testify the consis-
tent selection of groups of features plays an fundamental
role for image annotation, we compare our proposed NO-
VA with its counterpart algorithms. Without a special ex-
planation, the annotation performance of all of compared
sparsity-based are boosted by structured sparse canonical
correlation analysis (S2C&W)[8]. Under such a setting, the
annotation performance is solely influenced by the different
schemas of sparsity-based feature selection.

The compared sparsity-based feature selection algorithms
with our proposed NOVA are listed as following:

• convex individual-sparsity: lasso: Least Absolute
Shrinkage and Selection Operator (lasso) [24] selects
the important features individually and disregards the
group structure in features.

• convex group-sparsity: group lasso: group lasso
[30] encodes the group structure in features to encour-
age the selection of groups of features.

• nonconvex individual-sparsity: SCAD: Smoothly
Clipped Absolute Deviation (SCAD) [12] is a noncon-
vex penalty for individual feature selection.

All the methods are repeated ten times for ten random
training/test partitions, and we report the average results

and their standard deviation. Table 3 shows the perfor-
mances in terms of MacroAUC, MicroAUC and precision
on three data sets. The results shown in boldface are best
results.

From the results in Table 3, we can make the following
observations:

• The proposed NOVA achieves the best performance of
image annotation in almost all of metrics for all the
three data sets thanks to its group-based sparsity and
non-convex penalty.

• For MSRA-MM 2.0 data set, group lasso perform-
s better than NOVA in the precision measure. But
for multi-label image annotation, MacroAUC and Mi-
croAUC are more accurate indicators of true perfor-
mance. For those two measures, NOVA continues out-
performing group lasso.

• The approaches in the first quadrant, e.g., lasso, have
the worst performance This is easy to understand their
feature selection is performed on top of individual fea-
tures, which leads to local optima, and their penalty
is convex, which lead to inconsistency.

• The approaches in the second and fourth quadrants
have better performance than Lasso, but worse than
NOVA, as they only solved one of the two difficulties.

To visually illustrate the superior performance of NOVA,
Figure 5 shows example annotation results from the MSRA-
MM 2.0 data set by NOVA and group lasso. The annota-
tions with underlines denote the wrong ones. We can see
that group lasso made several mistakes, e.g., building, wa-
ter, and candle. Furthermore, while not completely wrong,
group lasso missed a few annotations from the ground truth,
e.g., building and animal. A key reason for the wrong and
missed annotations was because group lasso’s convex penal-
ty is inconsistent as discussed in earlier sections.
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Image samples with class labels Attributes Ground truth group lasso NOVA

black: yes yes yes
white: yes yes yes
furry: yes no yes
longleg: no no no
claws: yes yes yes
slow: yes no yes
strong yes yes yes
...

brown: yes yes yes
furry: yes yes yes
big: yes no yes
lean: yes yes yes
hooves: yes yes yes
tail: yes yes yes
horns no yes no
...

brown: yes yes yes
gray: yes yes yes
furry: yes yes yes
fast: no no no
insects no no no
meat: yes yes yes
smart: yes no yes
...

Figure 3: Some exemplar results of attributes selection with the classes and the corresponding attributes.
On the right side of the images shows the classes and the corresponding groundtruth of attributes and that
selected by group lasso and NOVA respectively.

5. CONCLUSIONS
To address the difficulties from individual feature selec-

tion and convex penalty, this paper proposed a new sparsity-
based approach termed NOVA (NOn-conVex group spArsi-
ty). We have demonstrated the superior performance of NO-
VA via three means in the paper. First, we derived the theo-
retical proof that NOVA is consistent, satisfying un-biasness,
sparsity and continuity. Second, we showed that NOVA
converges to the true underlying model by using a ground-
truth-available generative-model simulation. The compar-
isons between NOVA and the state-of-the-art approaches in
the other three quadrants showed that NOVA achieved the
best performance.

However, high-dimensional heterogeneous features extract-
ed from the image are often embedded in a nonlinear and in-
separable subspace. Some kernel-based methods such as [31]
have been proposed to discern the embedded subspace but
do not lead to consistent prediction. Therefore, non-convex
kernel methods is worthy of consideration and research.
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