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Abstract

This paper describes a probabilistic mode-based multi-
hypothesis tracking (MHT) algorithm. The modes are the
local maximums refined from initial samplesin a parametric
state space. Because the modes are highly representetive,
this technique alows usto use a small number of hypotheses
to effectivdly mode non-linear probabilistic distributions.
To ensure real-time tracking performance, we propose a
novel parametric causal contour model and an efficient
dynamic programming scheme to refine the initial contours
to nearby modes. Furthermore, to overcome the common
drawback of conventional MHT techniques, i.e., producing
only the maximum likelihood estimates instead of the
desred poderior, we introduce the highly effective
importance sampling framework into MHT, and develop a
novel procedure to edimate the pogerior from the
importance function. Experiments on a challenging real-
world video sequence demondrate that the proposed
tracking technique is both robust in complex environment
(e.0., clutter background and partial occlusion) and efficient
in computation.

1. Introduction

Many red-world applications require accurate people
tracking. For example, the ability to track moving people in
video surveillance and video conferencing systems will
greatly increase the chance of their adoption. Unfortunately,
robust and efficient people tracking in complex environment
is dtill an open research problem. In this paper, we focus our
attention on tracking human head/face, one of the most
important branches in people tracking. Let X; denote the
tracker gate (e.g., location and orientation) of the head and
let Z, be the image observation, both at time t. Our god isto
accurately and efficiently compute the posterior probability

of p(X:|Z).

In genera, there are three approaches to estimating a
probability disgtribution, i.e, pure parametric, pure non-
parametric and semi-parametric. The well-known Kaman
filter is a good representative of the pure parametric
approaches, where the digtribution is assumed to be
Gaussian. Unfortunately, because of its uni-mode
assumption, Kaman filter has only achieved limited success
in red-world tracking applications. To overcome this
difficulty, Isard and Blake propose a non-parametric
approach, i.e, CONDENSATION, where the digtribution is

represented and estimated by a set of properly postioned and
weighted particles [6]. CONDENSATION not only can essily
handle multi-mode digtributions, it also works in non-linear
dynamic systems. However, as a generd drawback to al non-
parametric algorithms, CONDENSATION requires large number
of particles. The required particles aso grow exponentialy
with the dimensiondlity of the state space. To overcome this
difficulty, severa improved techniques have been proposed to
make the particles more effective. For example, in [5],
Deutscher et. al. propose an annealed particle filter for tracking
articulated human figure. It is based on probabilistic pruning,
and focuses its particles in the neighborhood around the global
pesks of the weighting function. This method greatly reduces
the number of particles needed. But as noted by its authors, it
is not a robust Bayesian framework any more. By discarding
inferior pesks in the weighting function, it may lose the true
dateif large distractions occur.

A more promising direction is to use the semi-parametric
approaches, where the to-be-estimated distribution is modeled
by a mixture of parametric distributions. These semi-parametric
approaches retain the capability of representing multi-mode
distributions as CONDENSATION does, but with much fewer
samples. Because of the many attractive features that the semi-
parametric approaches have, we focus our attention on this
paradigm in this paper. Multi-hypothesis tracking (MHT) is
one of the most successful semi-parametric approaches used in
tracking. It isfirst developed in radar-tracking systems [11] and
recently has been applied in articulated human body tracking
by Cham and Rehg [3]. MHT works in a parametric state
space. Each hypothess is a particular configuration of
parameters in the date space, and the overdl date is
represented by a mixture of multiple hypotheses.

One limitation with the classc MHT, used in radar
tracking, is that it assumes a set of discrete hypotheses is
available at any time step. This assumption is totdly valid in
radar tracking where the god is to associate multiple detected
targets with multiple airplanes. In visua tracking, however,
this assumption cannot be met eadily [3]. For example, for
human head tracking, it is amost impossble to develop a
sngle high-level “festure detector” that can detect a set of
discrete hypotheses of the head position/pose a every frame.
On the other hand, usng low-level festures such as image
edgesin this scheme will quickly lead to an intractable number
of hypotheses. In [3], Cham and Rehg solve this difficulty by
fird usdng an appearance-based gradient local search to



generate a set of hypotheses (local maximums), and then
congtructing the likelihood function as a piecewise Gaussian
by combining the multiple hypotheses. While this approach
has successfully demonstrated the effectiveness of the MHT
paradigm, it hasthree mgjor difficulties.

1. For visud tracking, the appearance/template-based
approaches only work with relatively rigid objects and
with objects that rarely change orientation and intensity.
For head tracking, however, the head orientation and
the environment lighting can change from frame to
frame, causing head appearance change dramatically.

2. This approach uses an iterative Gauss-Newton method
to generate hypotheses, which is computationaly
expensive and not suitable for real-time tracking.

3. Mog importantly, as pointed out in [4], this approach
only produces maximum likelihood estimates, but not
the desired posterior p(X; |Z). This can sgnificantly
degrade the tracking performance.

In this paper, we propose various techniques to
overcome the above difficulties, and we present an effective
head tracking system using the MHT paradigm. The rest of
the paper is organized as follows. In Section 2, to overcome
the firgt difficulty, we propose to use parametric contours,
ingtead of the appearance, to modd the object-of-interest.
This is particularly effective in head tracking, where the
head can be well modeled by a parametric elipse. While the
head orientation and lighting can dramatically change the
head appearance, the contour of the head remains amost the
same shape. Furthermore, to deal with the second difficulty,
we propose a novel causal contour model to avoid iterative
refinement, enabled by an efficient dynamic programming
scheme. In Section 3, we overcome the third difficulty by
cagting the MHT technique in the importance sampling
framework, and show how to effectively estimate the desired
posterior p(X; |Z,). Specificaly, we describe how to compute
the importance function, the observation likelihood and the
trangition probability. In Section 4, we apply our proposed
head tracking technique on a chalenging red-world video
sequence and report promising tracking results. Concluding
remarks are given in Section 5.

2. Causal Contour Modd for MHT

There are two important terminologies in our proposed
mode-based MHT. We use“sample’ to denote a Sate space
configuration obtained from some prior digtribution or
prediction scheme. We use “mode’ to denote a refined
“sample’ that corresponds to a local maximum in the
digtribution. Note that both “sample” and “mode” represent
a particular configuration of parameters in the state space.
To refine an initial contour (the sample) to the best local
contour (the mode), the active contour technique, eg.,
[1][8][10][12], has been proved to be a powerful tool.

However, in the context of red-time MHT, it has the following
difficulties:

1. The mode can only be obtained by an iterative search in
the 2D image plane, which is inefficient for red-time
tracking.

2. Becausethetraditional active contour is non-parametric, it
can eadly be digstracted by background clutter, and more
importantly, not in aready-to-use form for MHT.

To address difficulty 1, in Sections 2.1 and 2.2, we propose a
novel causa 1D contour model to facilitate efficient sample
refinement. To overcome difficulty 2, in Section 2.3, we
propose to use a parametric dlipse as the state space, which
can eadly take domain knowledge (eg., shape prior) into
account to avoid background distraction, and can readily be
used in MHT.

2.1 1D contour representation
In our proposed MHT, given a sample, we want to find its
corresponding mode, i.e., the best contour within the vicinity.
Because of the well-known aperture effect, only the
deformations aong the norma lines of a contour can be
detected. We can therefore restrict the contour searching to the
set of normal lines of the contour (see Figure 1). Let ¢ ¢=1,
... M, betheindex of the normal linesand A, A = -N, ..., N, be
the index of pixels dong anormal line. Furthermore, let 0,(A)
denote the image intendity a pixel A on line @ That is,
P,(A) =1(x,,.Y,,) where (X,,.y,,) is the corresponding
image coordinate of pixel A on line gand 1(x,,,y,,) isthe
image intengity.
Each normal line has 2N+ 1 pixels, which are indexed from
-N to N. The center point of each normd line is placed on the
initid contour (the sample) and indexed as 0. Let ¢(¢) denote

the best local contour (the mode) location on line ¢ If we can
detect al c(¢),¢0[LM] then we can obtain the best local
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Figure 1: Illustration of the 1D contour model. At frame t,
the solid curve is the initial contour (the sample) based on the
tracking results at frame t-1. The dashed curve is the best local
contour (the mode) that we want to find. A set of
measurements are collected along the M norma lines of the
initial contour. ¢(¢) denotes the best local contour location on
line @ The best local contour can be obtained if we can detect

al ¢(g),¢ 0 M]-




contour. Note that ingtead of representing the contour by a
2D image coordinate, i.e, (Xw,yw), we can now

represent it by amuch simpler 1D function c(¢), ¢= 1, ...,
M.

2.2 Efficient contour refinement

If the initid contour matched the best locd contour
exactly, the detected contour points on al norma lines
would have been exactly a the center, i.e,
c(¢) =0,0¢0[L,M]. In redity, however, we need to find

the best local contour c(¢) based on the measurements.

Like in the traditiond active contour moddl, this is achieved
by optimizing an objective function, which favors a smooth
contour along pixels having sharp intensity changes. To do
the optimization efficiently instead of the dow iterative
search, we define the contour smoothness congtraint in a
causdl way (Section 2.2.2). The optimad contour can
therefore be found by a dngle iteration of dynamic
programming. The objective function and the optimization
procedure are described below.

2.2.1. Edgelikdihood term

Contour points are likely to be dgnified by large
color/intensity changes [1][8][10][12]. We therefore choose
edge likelihood as a term in the objective function. We
represent the edge likelihood in energy form, which is
usudly caled the external energy. The edge likelihood of
pixel A online @ E.(p,,4) CaN therefore be computed as a

function of the image gradient along the direction of theline:
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where g(.) is an appropriste monotonically increasing
function [1][8][10][12].

Congdering the initid contour is relatively accurate, we
can further refine the objective function by putting a zero-
mean Gaussan kernd at the center of the norma line.
Therefore, an extra energy term, which favors the edge
pointsin the center part of the normd lineisdefined as:

E.(4,)=Ay/0. )

where g5 controls how strong this congtraint should be. For
example, when the motion of the object is difficult to predict
or no accurate motion mode can be obtained, the o; should
be large enough to incorporate uncertainties, and hence
lowering the influence of this congtraint.

E.(4,) = g[-

Because the above edge detection scheme only examines
each normd line individualy, it does not have enough
information to ensure good overdl contour detection results
in cluttered environments. We therefore need to take into

account the relationship between contour points on adjacent
normd lines. If the normdl lines are dense (e.g., 20-60 in our
experiments), it is easy to see from Figure 1 that the best local
contour points on adjacent normd lines tend to have smilar
amount of displacement from the initial contour points
(indexed as 0 on each normal ling). This inter-normal-line
correlation can be modeled effectively by the smoothness
congtraint.

2.2.2. Causal smoothness constraint

The contour smoothness constraint has been used in many
contour models [1][8][10][12]. It is achieved by defining an
internal energy term to penalize the roughness of a contour. In
the traditional snake model, the roughness is characterized by
the first and second derivatives of the contour. Because the first
and second derivatives of the current contour point depend on
the contour points both before and &fter it, this representation
of the smoothness congtraint is not causa, and the best loca
contour can only be obtained iteratively [1][8]. For red-time
head tracking, it is imperative to have an efficient contour
refinement process. Enabled by our 1D contour model, we can
easily define the smoothness congtraint in a causal way:

Ei (Awli/lw) :| /1¢ _/]Wl |2 (3)
This causal definition allows us to design a very efficient
dynamic-programming-based contour refinement process (see
Section 2.2.3), and we can obtain the best local contour in a
sngleiteration.

Given dl the condraints, the total objective function of a
contour ¢(@, =1, ..., M, isdefined asfollows:

ECc@) =Y., (@E (co-1.c@)
+a.E.(c(9) +a.E(c(9)
where a,, a, and a are appropriate weights for each of the

energy terms. The best local contour is the ¢(@),¢=1, ..., M,
that gives the minimum tota energy. Because on each norma
line there are 2N+ 1 locations for ¢(¢), a naive agorithm would
require (2N+1)" tries before finding the best contour.
Fortunately, because of the new causal definition of the
smoothness condraint, it is possble to find the best loca
contour efficiently by using a dynamic programming scheme.
2.2.3. Energy minimization: finding the modes

To obtain the best local contour (the mode) using dynamic
programming, the optimization processis divided into multiple
stages, sarting from ¢ = 0 to ¢ = M. If the tota energy
(E°()I¢,)) of the best contour ending at point A, is known, it

can be propagated to every point on line (¢+ 1) to compute the
total energy for Ay (E°(/1w1)). This dynamic programming
propagation process can be explained asfollows:
E° () =, min {E°01,)+a,E (,.1,..} o
+0E () *@,E(Ay). A DI-N.N]



After the energy is propagated to the last line g= M, the
best contour can be obtained by firgt finding the minimum
energy point on line M, min ., E°(4,), ad then

back-tracking through al the lines to obtain the contour
points on each line. Note that the computation complexity
has reduced from the naive approach’s (2N+1)" to dynamic
programming's (2N+1)° M .

To summarize, unlike the traditiond active contour
mode!, our proposed causal 1D contour model adlows us to
obtain the best contour without iteratively searching the 2D
image plane. Note that the best contour (the mode) is with
respect to a given initiad contour (the sample). If two
samples are far from each other, the modes obtained can be
quite different, which is exactly what we need in MHT.

2.3 Shapeprior: parametric contours

So far we have discussed the contour in a non-
parametric form — each individual contour point can move
arbitrarily, as long as the overdl contour minimizes the
objective function (Equations (4) and (5)). This means that
a contour can deform to any shape. Because of its high
degree of freedom, this non-parametric representation is
both susceptible to background clutter and not easily used in
MHT. We therefore propose to use the parametric elipse to
represent the contours. First, human head can be very well
modeled by a parametric dlipse, regardiess of the head
orientation [2]. This domain knowledge, i.e., shape prior,
can help the contour avoid erroneous evolvement, therefore
greatly improving the tracking results (see Figure 4).
Second, the parametric dlipse represents an elegant state
space whose samples/modes can be readily used in MHT.
Specificaly, we use afive dimensond parametric elipseto
represent the head contour:

X =[x Ye. @, B, P] (6)
where (X, Vo) is the center of the dlipse, a and S are the
lengths of the mgjor and minor axes of the élipse, and @ is
the orientation of the dlipse. Note that the initial samplesare
aways dlipse. But after the refinement process, the
obtained modes may not be dlipses any more. We therefore
use the least mean square (LMS) technique to fit the modes
to the five-dimensiond €ellipse state space before tracking.

3. Mode-based Multi-Hypothess Tracking

As pointed out in Section 1, one of the mgjor limitations
with the MHT approach proposed in [3] is that it only
produces maximum likelihood estimates, but not the desired
posterior [4]. In this section, we present how to estimate the
posterior from MHT by using the importance sampling.

3.1 Congructing importance function

Let g be a known proposal digtribution (also called the
importance function). It has been proven [9] that as | tends
to infinity, the unknown pogterior distribution p can be

approximated by a set of properly weighted particles drawvn
from the known importance function g:
p(X,1Z,)= zi'zlnf 3, (dX,) )
Where | is the number of paticles, J is the Dirac ddta
function, and the weights for the particles are calculated as.
__P(X{IX1) :
=S SE[(Z, X)) 8
A IxGzy e ®

The process of drawing particles x! from the importance
function g and caculating the particle weights 77 is caled
importance sampling. There are infinite number of choices of
the importance function, as long as its support includes that of
the posterior digtribution. But of course, when g is close to the
true pogterior p, the particles are more effective. The ideais
then to put more particles in areas where posterior may have
higher dendity to avoid usdless particles [7]. The mode-based
MHT fitsin thisimportance sampling framework well.

Before we proceed further, it is beneficia to first define
some terminologies. We will use X; to denote a general dtate
variable, as used in Equations (7) and (8). Furthermore, let
X[, k=1, .., K, denote the raw samples drawn from a prior

digtribution, and let X!, 1= 1, ..., L, denote the modes refined

from the raw samples. Note that because of the refinement
processin Section 2.2, the best contour obtained may not be an
ellipse any more. Here, we use X/ to denote the best contour
after fitting the dlipse (Equation (6)).

If we model each mode as a local Gaussian, and use the
mixture of the modes as the importance function g, we have:

l ~
AX 1XZ) = SN, ©)
where“ =" denotes “defined as’, and a, isthe variance of the

Gaussian for the modes. Once the importance function q is
congtructed, we can draw particles >Zti ,i=1,..,1, fromit, and
estimate the posterior by using Equations (7) and (8). Note that,
to preserve dl the L modes in the importance function, the
number of particles should be greater than or equal to the
number of modes, i.e, | >= L.

Given the importance function g (Equation (9)), we can
evaluate the probability of aparticle X! as:

S 1 1t (X =X")?

X le XI = - — t t
a(X, = X{ X;) oo, LZ:FXP[ Tt (10)

Referring to Equation (8), in order to calculate the
particle weights, in addition to evaluating Equation (10),
we also need to calculate the particle likelihood p(z, | X!)
and the particle transition probability p(x!|X,,)- We
discuss those two terms in the following two sub-sections.

3.2 Calculating thelikelihood

Let Z, ,denote the edge detection observation on line gat time
t. Because of background clutter, there can be multiple edges
along each normal line. Let J be the number of detected edges




(Zip= (Z1, Z5, ..., Z3)). Of the J edges, a most oneisthe true
contour. With the assumption that the clutter is a Poisson
process dong the line with spatid density y and the true
target measurement is normaly distributed with standard
deviaion ¢, we can obtain the edge likeihood model as
follows:

N 1 e (z,-1,)°
Zy Ay = Xip) Ol =3 exp ————"—
p( ty | » t"”) \/Zmzqoy; { 2022

where qq is the prior probability that none of the J edges is
the true contour. By assuming independence between
different norma lines, we have the following overal
likelihood function:

M

pZ, |X)= |‘| PZ,,1X!,) (11)

@=

3.3 System dynamicsand particle transition probability

Similar to [14], we adopt the Langevin process to
modd the human head movement dynamics:

Xt_ert_l_'_O 12
X | |0 a| X, b (12
wherea=exp(-B7), b =vy1-a’, Byistherate constant,
m is a thermal excitation process drawn from Gaussian
digribution N(0, Q), Tisthe discretizationtimesepand V is
the dteady-state root-mean-square velocity. Assuming that
esch particle forms a local Gaussian, the particle trangtion
probability can be computed as:
i o 1 1o (X{ = X{,)?
XX ) =——= e B L
p( t | t—l) —\/ZTO'I Zr=l €x 20_2 (13)
where gisthe variance of the Gaussian kerndl.
3.4 Thecompletealgorithm

By formulating MHT in the importance sampling
framework, we have derived the desired posterior estimates,
rather than the maximum likelihood egtimates. We can
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Figure 2: Tracking results with a sngle hypothesis. Beginning at
frame 299, the tracker is digtracted by the sharp edge of the blinder.
The digtraction becomes larger over time (eg., frame 322). The
tracker resumes tracking again at frame 324 when the person happens
to move to the digtracting area. In frame 458, the tracker is distracted
by occlusion and does not recover afterwards.

therefore represent the posterior using the set of particles and
propagate them to the next frame. Because the particles are
drawn from the mixture of al the modes (i.e., the importance
function), this agorithm is more robugt than single-hypothesis
approaches, and can recover quickly after large digtractions.
The proposed mode-based MHT technique, cast in the
importance sampling framework, is summarized asfollows:

1. Generating importance function:
@ Given the paticle set obtained a t-1,i.e, { X!, 77,1 =

t-1’

1,...1}, draw K raw samples )?[k_l, k=1, .., K, fromthe

set. Passing the raw samples through the system dynamics
(Equation (12)), we obtain the predicted raw samples X« .

b) For eachraw sample X, find the best-fit contour )'(”t' ,ie,
the mode within its neighborhood. A robust and efficient
dynamic programming based mode-finding process is
explained in detail in Section 2.2. After finding the modes,
we generate the importance function using Equation (9).

2. Importance sampling:

@ Draw | patides (X/, i = 1,...1 ) from the importance
function (Equation (9)).
b) Weight particlesusing Equations (8),(10),(11) and (13).
3. Output:

Once dl the weights are caculaed, the probabilistic
tracking result can be estimated by this newly obtained

patideset{ X/, 77,1 =1,...1 } [6][7].

4. Application in Human Head Tracking

In the experiment reported in this section, we use 30 normal
lines dong the dlipse contour, i.e, M = 30. Each lineis 21
pixels long, i.e, N = 10, and we use 20 particles during the
tracking, i.e,, | = 20. The tracking algorithm isimplemented in
C++ on Windows platform. No attempt is made on code
optimization, and the current system runs at 10 frames/sec on a
standard PI11 933 PC.

A chdllenging real-world video sequence in a cluttered
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Figure 3: Tracking results of MHT. The tracker tracks through
out the sequence. In frames 458-467, the tracker is distracted by
partia occluson. But the correct hypothesis emergesin frame 469,
and the tracker resumes tracking reliably.



environment with 499 frames is used in the experiment. The
sequence smulates various tracking conditions, including
appearance changes, quick movement, out-of-plane head
rotation, shape deformation, camera zoom in and out, and
partia occluson. Referring to Figures 2-4, note that the
blinds and the door (e.g., sharp edges and clutters) impose
great challengesto any visua tracking agorithms.

The mode-based MHT enables us to ded with severe
digractions. Twenty hypotheses (I=20) are enough to
successfully track the head throughout the sequence. All the
5 parameters of the elipse are alowed to change. The
tracking results of the single-hypothesis approach and mode-
based MHT approach are shown in Figures 2 and 3 for
comparison.  The dngle-hypothesis approach is eadly
digracted, while the MHT is quite robust under various
tracking conditions. Without the sample-refining process, it
would be amogt impossble to track in the 5-dimension
parametric state space with only 20 hypotheses.

Furthermore, to understand the importance of the
parametric contour, we compare our parametric contour
model againgt the traditiond non-parametric contour
models. Because of the high degree of freedom in the non-
parametric contour, i.e, M = 30 vs. the 5D dlipse, the local
smoothness congraints are not sufficient to assure the global
shape and the contour is easily distracted by the background
clutter. As shown in Figure 4, when the person moves across
the door from right to |eft, the sharp edges on the blinds and
the door severely digtract the non-parametric contour. For
finelevel comparison purpose, we display the raw contour
resultsinstead of the fitted ellipse for both methods.

5. Concluson

In this paper, a mode-based MHT technique is proposed
for head tracking. This technique dlows us to use a small
number of hypotheses to represent highly non-linear
probabilistic distributions. To ensure real-time performance,
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Figure 4: Comparison of our parametric contour mode (top
row) and traditional non-parametric contour modes (bottom
row). With only five degree of freedom, our contour model is much
more robugt. For the non-parametric contours, the tracker is severdly

digtracted by the sharp edges on the background.

a novel causd contour modd is proposed, and techniques
based on an efficient dynamic programming scheme are
developed to refine the raw samples to nearby modes (local
maximums). In addition, a parametric contour modd, i.e, the
five-dimensional parametric dlipse, is used for increased
stability and to mode! the shape prior.

To overcome the common drawback of MHT, i.e,
producing only the maximum likelihood estimates instead of
the desired poderior, we have further introduced the
importance sampling framework into MHT, and developed an
effective procedure for estimating the pogterior from the
importance function. We have tested our proposed technique
on a chalenging red-world video sequence and reported
promising tracking results.
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