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Abstract

This paper describes a probabilistic mode-based multi-
hypothesis tracking (MHT) algorithm. The modes are the
local maximums refined from initial samples in a parametric
state space. Because the modes are highly representative,
this technique allows us to use a small number of hypotheses
to effectively model non-linear probabilistic distributions.
To ensure real-time tracking performance, we propose a
novel parametric causal contour model and an efficient
dynamic programming scheme to refine the initial contours
to nearby modes. Furthermore, to overcome the common
drawback of conventional MHT techniques, i.e., producing
only the maximum likelihood estimates instead of the
desired posterior, we introduce the highly effective
importance sampling framework into MHT, and develop a
novel procedure to estimate the posterior from the
importance function. Experiments on a challenging real-
world video sequence demonstrate that the proposed
tracking technique is both robust in complex environment
(e.g., clutter background and partial occlusion) and efficient
in computation.

1. Introduction
Many real-world applications require accurate people

tracking. For example, the ability to track moving people in
video surveillance and video conferencing systems will
greatly increase the chance of their adoption. Unfortunately,
robust and efficient people tracking in complex environment
is still an open research problem. In this paper, we focus our
attention on tracking human head/face, one of the most
important branches in people tracking. Let Xt denote the
tracker state (e.g., location and orientation) of the head and
let Zt be the image observation, both at time t. Our goal is to
accurately and efficiently compute the posterior probability
of p(Xt |Zt).

In general, there are three approaches to estimating a
probability distribution, i.e., pure parametric, pure non-
parametric and semi-parametric. The well-known Kalman
filter is a good representative of the pure parametric
approaches, where the distribution is assumed to be
Gaussian. Unfortunately, because of its uni-mode
assumption, Kalman filter has only achieved limited success
in real-world tracking applications. To overcome this
difficulty, Isard and Blake propose a non-parametric
approach, i.e., CONDENSATION, where the distribution is

represented and estimated by a set of properly positioned and
weighted particles [6]. CONDENSATION not only can easily
handle multi-mode distributions, it also works in non-linear
dynamic systems. However, as a general drawback to all non-
parametric algorithms, CONDENSATION requires large number
of particles. The required particles also grow exponentially
with the dimensionality of the state space. To overcome this
difficulty, several improved techniques have been proposed to
make the particles more effective. For example, in [5],
Deutscher et. al. propose an annealed particle filter for tracking
articulated human figure. It is based on probabilistic pruning,
and focuses its particles in the neighborhood around the global
peaks of the weighting function. This method greatly reduces
the number of particles needed. But as noted by its authors, it
is not a robust Bayesian framework any more. By discarding
inferior peaks in the weighting function, it may lose the true
state if large distractions occur.

A more promising direction is to use the semi-parametric
approaches, where the to-be-estimated distribution is modeled
by a mixture of parametric distributions. These semi-parametric
approaches retain the capability of representing multi-mode
distributions as CONDENSATION does, but with much fewer
samples. Because of the many attractive features that the semi-
parametric approaches have, we focus our attention on this
paradigm in this paper. Multi-hypothesis tracking (MHT) is
one of the most successful semi-parametric approaches used in
tracking. It is first developed in radar-tracking systems [11] and
recently has been applied in articulated human body tracking
by Cham and Rehg [3]. MHT works in a parametric state
space. Each hypothesis is a particular configuration of
parameters in the state space, and the overall state is
represented by a mixture of multiple hypotheses.

One limitation with the classic MHT, used in radar
tracking, is that it assumes a set of discrete hypotheses is
available at any time step. This assumption is totally valid in
radar tracking where the goal is to associate multiple detected
targets with multiple airplanes. In visual tracking, however,
this assumption cannot be met easily [3]. For example, for
human head tracking, it is almost impossible to develop a
single high-level “feature detector” that can detect a set of
discrete hypotheses of the head position/pose at every frame.
On the other hand, using low-level features such as image
edges in this scheme will quickly lead to an intractable number
of hypotheses. In [3], Cham and Rehg solve this difficulty by
first using an appearance-based gradient local search to



generate a set of hypotheses (local maximums), and then
constructing the likelihood function as a piecewise Gaussian
by combining the multiple hypotheses. While this approach
has successfully demonstrated the effectiveness of the MHT
paradigm, it has three major difficulties.

1. For visual tracking, the appearance/template-based
approaches only work with relatively rigid objects and
with objects that rarely change orientation and intensity.
For head tracking, however, the head orientation and
the environment lighting can change from frame to
frame, causing head appearance change dramatically.

2. This approach uses an iterative Gauss-Newton method
to generate hypotheses, which is computationally
expensive and not suitable for real-time tracking.

3. Most importantly, as pointed out in [4], this approach
only produces maximum likelihood estimates, but not
the desired posterior p(Xt |Zt). This can significantly
degrade the tracking performance.

In this paper, we propose various techniques to
overcome the above difficulties, and we present an effective
head tracking system using the MHT paradigm. The rest of
the paper is organized as follows. In Section 2, to overcome
the first difficulty, we propose to use parametric contours,
instead of the appearance, to model the object-of-interest.
This is particularly effective in head tracking, where the
head can be well modeled by a parametric ellipse. While the
head orientation and lighting can dramatically change the
head appearance, the contour of the head remains almost the
same shape. Furthermore, to deal with the second difficulty,
we propose a novel causal contour model to avoid iterative
refinement, enabled by an efficient dynamic programming
scheme. In Section 3, we overcome the third difficulty by
casting the MHT technique in the importance sampling
framework, and show how to effectively estimate the desired
posterior p(Xt |Zt). Specifically, we describe how to compute
the importance function, the observation likelihood and the
transition probability. In Section 4, we apply our proposed
head tracking technique on a challenging real-world video
sequence and report promising tracking results. Concluding
remarks are given in Section 5.

2. Causal Contour Model for MHT
There are two important terminologies in our proposed

mode-based MHT. We use “sample” to denote a state space
configuration obtained from some prior distribution or
prediction scheme. We use “mode” to denote a refined
“sample” that corresponds to a local maximum in the
distribution. Note that both “sample” and “mode” represent
a particular configuration of parameters in the state space.
To refine an initial contour (the sample) to the best local
contour (the mode), the active contour technique, e.g.,
[1][8][10][12], has been proved to be a powerful tool.

However, in the context of real-time MHT, it has the following
difficulties:

1. The mode can only be obtained by an iterative search in
the 2D image plane, which is inefficient for real-time
tracking.

2. Because the traditional active contour is non-parametric, it
can easily be distracted by background clutter, and more
importantly, not in a ready-to-use form for MHT.

To address difficulty 1, in Sections 2.1 and 2.2, we propose a
novel causal 1D contour model to facilitate efficient sample
refinement. To overcome difficulty 2, in Section 2.3, we
propose to use a parametric ellipse as the state space, which
can easily take domain knowledge (e.g., shape prior) into
account to avoid background distraction, and can readily be
used in MHT.

2.1 1D contour representation
In our proposed MHT, given a sample, we want to find its

corresponding mode, i.e., the best contour within the vicinity.
Because of the well-known aperture effect, only the
deformations along the normal lines of a contour can be
detected. We can therefore restrict the contour searching to the
set of normal lines of the contour (see Figure 1). Let φ, φ =1,
…, M, be the index of the normal lines and λ, λ = -N, ..., N, be
the index of pixels along a normal line. Furthermore, let ρφ(λ)
denote the image intensity at pixel λ on line φ. That is,

),()( λφλφφ λρ yxI= , where ( λφx , λφy ) is the corresponding

image coordinate of pixel λ on line φ and ),( λφλφ yxI is the

image intensity.

Each normal line has 2N+1 pixels, which are indexed from
-N to N. The center point of each normal line is placed on the
initial contour (the sample) and indexed as 0. Let c(φ) denote
the best local contour (the mode) location on line φ. If we can
detect all ],1[),( Mc ∈φφ then we can obtain the best local

ρφ(N)

ρφ (-N)

c(φ)

Figure 1: Illustration of the 1D contour model. At frame t,
the solid curve is the initial contour (the sample) based on the
tracking results at frame t-1. The dashed curve is the best local
contour (the mode) that we want to find. A set of
measurements are collected along the M normal lines of the
initial contour. c(φ) denotes the best local contour location on
line φ. The best local contour can be obtained if we can detect
all ],1[),( Mc ∈φφ .



contour. Note that instead of representing the contour by a
2D image coordinate, i.e., ( λφx , λφy ), we can now

represent it by a much simpler 1D function )(φc , φ= 1, …,

M.

2.2 Efficient contour refinement

If the initial contour matched the best local contour
exactly, the detected contour points on all normal lines
would have been exactly at the center, i.e.,

],1[,0)( Mc ∈∀= φφ . In reality, however, we need to find

the best local contour )(φc based on the measurements.

Like in the traditional active contour model, this is achieved
by optimizing an objective function, which favors a smooth
contour along pixels having sharp intensity changes. To do
the optimization efficiently instead of the slow iterative
search, we define the contour smoothness constraint in a
causal way (Section 2.2.2). The optimal contour can
therefore be found by a single iteration of dynamic
programming. The objective function and the optimization
procedure are described below.

2.2.1. Edge likelihood term

Contour points are likely to be signified by large
color/intensity changes [1][8][10][12]. We therefore choose
edge likelihood as a term in the objective function. We
represent the edge likelihood in energy form, which is
usually called the external energy. The edge likelihood of
pixel λ on line φ, ),( λρφeE , can therefore be computed as a

function of the image gradient along the direction of the line:
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where g(.) is an appropriate monotonically increasing
function [1][8][10][12].

Considering the initial contour is relatively accurate, we
can further refine the objective function by putting a zero-
mean Gaussian kernel at the center of the normal line.
Therefore, an extra energy term, which favors the edge
points in the center part of the normal line is defined as:

22 /)( ssE σλλ φφ = (2)

where σs controls how strong this constraint should be. For
example, when the motion of the object is difficult to predict
or no accurate motion model can be obtained, the σs should
be large enough to incorporate uncertainties, and hence
lowering the influence of this constraint.

Because the above edge detection scheme only examines
each normal line individually, it does not have enough
information to ensure good overall contour detection results
in cluttered environments. We therefore need to take into

account the relationship between contour points on adjacent
normal lines. If the normal lines are dense (e.g., 20-60 in our
experiments), it is easy to see from Figure 1 that the best local
contour points on adjacent normal lines tend to have similar
amount of displacement from the initial contour points
(indexed as 0 on each normal line). This inter-normal-line
correlation can be modeled effectively by the smoothness
constraint.

2.2.2. Causal smoothness constraint

The contour smoothness constraint has been used in many
contour models [1][8][10][12]. It is achieved by defining an
internal energy term to penalize the roughness of a contour. In
the traditional snake model, the roughness is characterized by
the first and second derivatives of the contour. Because the first
and second derivatives of the current contour point depend on
the contour points both before and after it, this representation
of the smoothness constraint is not causal, and the best local
contour can only be obtained iteratively [1][8]. For real-time
head tracking, it is imperative to have an efficient contour
refinement process. Enabled by our 1D contour model, we can
easily define the smoothness constraint in a causal way:

2
11 ||),( −− −= φφφφ λλλλiE (3)

This causal definition allows us to design a very efficient
dynamic-programming-based contour refinement process (see
Section 2.2.3), and we can obtain the best local contour in a
single iteration.

Given all the constraints, the total objective function of a
contour c(φ), φ=1, …, M, is defined as follows:
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where iα , eα and sα are appropriate weights for each of the

energy terms. The best local contour is the c(φ),φ =1, …, M,
that gives the minimum total energy. Because on each normal
line there are 2N+1 locations for c(φ), a naïve algorithm would
require (2N+1)M tries before finding the best contour.
Fortunately, because of the new causal definition of the
smoothness constraint, it is possible to find the best local
contour efficiently by using a dynamic programming scheme.

2.2.3. Energy minimization: finding the modes

To obtain the best local contour (the mode) using dynamic
programming, the optimization process is divided into multiple
stages, starting from φ = 0 to φ = M. If the total energy
( )( φλoE ) of the best contour ending at point λφ is known, it

can be propagated to every point on line (φ+ 1) to compute the
total energy for λφ+1 ( )( 1+φλoE ). This dynamic programming

propagation process can be explained as follows:
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After the energy is propagated to the last line φ= M, the
best contour can be obtained by first finding the minimum
energy point on line M, )(min ],[ M

o
NN E λλ −∈ , and then

back-tracking through all the lines to obtain the contour
points on each line. Note that the computation complexity
has reduced from the naïve approach’s (2N+1)M to dynamic
programming’s (2N+1)2 M .

To summarize, unlike the traditional active contour
model, our proposed causal 1D contour model allows us to
obtain the best contour without iteratively searching the 2D
image plane. Note that the best contour (the mode) is with
respect to a given initial contour (the sample). If two
samples are far from each other, the modes obtained can be
quite different, which is exactly what we need in MHT.

2.3 Shape prior: parametric contours
So far we have discussed the contour in a non-

parametric form – each individual contour point can move
arbitrarily, as long as the overall contour minimizes the
objective function (Equations (4) and (5)). This means that
a contour can deform to any shape. Because of its high
degree of freedom, this non-parametric representation is
both susceptible to background clutter and not easily used in
MHT. We therefore propose to use the parametric ellipse to
represent the contours. First, human head can be very well
modeled by a parametric ellipse, regardless of the head
orientation [2]. This domain knowledge, i.e., shape prior,
can help the contour avoid erroneous evolvement, therefore
greatly improving the tracking results (see Figure 4).
Second, the parametric ellipse represents an elegant state
space whose samples/modes can be readily used in MHT.
Specifically, we use a five dimensional parametric ellipse to
represent the head contour:

],,,,[ Φ= βαcc yxX (6)

where (xc, yc) is the center of the ellipse, α and β are the
lengths of the major and minor axes of the ellipse, and Φ is
the orientation of the ellipse. Note that the initial samples are
always ellipse. But after the refinement process, the
obtained modes may not be ellipses any more. We therefore
use the least mean square (LMS) technique to fit the modes
to the five-dimensional ellipse state space before tracking.

3. Mode-based Multi-Hypothesis Tracking
As pointed out in Section 1, one of the major limitations

with the MHT approach proposed in [3] is that it only
produces maximum likelihood estimates, but not the desired
posterior [4]. In this section, we present how to estimate the
posterior from MHT by using the importance sampling.

3.1 Constructing importance function
Let q be a known proposal distribution (also called the

importance function). It has been proven [9] that as I tends
to infinity, the unknown posterior distribution p can be

approximated by a set of properly weighted particles drawn
from the known importance function q:
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Where I is the number of particles, δ is the Dirac delta
function, and the weights for the particles are calculated as:
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The process of drawing particles i
tX from the importance

function q and calculating the particle weights i
tπ is called

importance sampling. There are infinite number of choices of
the importance function, as long as its support includes that of
the posterior distribution. But of course, when q is close to the
true posterior p, the particles are more effective. The idea is
then to put more particles in areas where posterior may have
higher density to avoid useless particles [7]. The mode-based
MHT fits in this importance sampling framework well.

Before we proceed further, it is beneficial to first define
some terminologies. We will use Xt to denote a general state
variable, as used in Equations (7) and (8). Furthermore, let

k
tX , k = 1, …, K, denote the raw samples drawn from a prior

distribution, and let l
tX

~ , l = 1, …, L, denote the modes refined

from the raw samples. Note that because of the refinement
process in Section 2.2, the best contour obtained may not be an
ellipse any more. Here, we use l

tX
~ to denote the best contour

after fitting the ellipse (Equation (6)).
If we model each mode as a local Gaussian, and use the

mixture of the modes as the importance function q, we have:
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where “≡” denotes “defined as”, and
qσ is the variance of the

Gaussian for the modes. Once the importance function q is
constructed, we can draw particles i

tX̂ , i = 1, …, I, from it, and

estimate the posterior by using Equations (7) and (8). Note that,
to preserve all the L modes in the importance function, the
number of particles should be greater than or equal to the
number of modes, i.e., I >= L.

Given the importance function q (Equation (9)), we can
evaluate the probability of a particle i

tX̂ as:
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Referring to Equation (8), in order to calculate the
particle weights, in addition to evaluating Equation (10),
we also need to calculate the particle likelihood )ˆ|( i

tt XZp

and the particle transition probability )ˆ|ˆ( 1−t
i
t XXp . We

discuss those two terms in the following two sub-sections.

3.2 Calculating the likelihood
Let Zt,φdenote the edge detection observation on line φat time
t. Because of background clutter, there can be multiple edges
along each normal line. Let J be the number of detected edges



(Zt,φ= (Z1, Z2, ..., ZJ)). Of the J edges, at most one is the true
contour. With the assumption that the clutter is a Poisson
process along the line with spatial density γ and the true
target measurement is normally distributed with standard
deviation σz, we can obtain the edge likelihood model as
follows:
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where q0 is the prior probability that none of the J edges is
the true contour. By assuming independence between
different normal lines, we have the following overall
likelihood function:
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3.3 System dynamics and particle transition probability

Similar to [14], we adopt the Langevin process to
model the human head movement dynamics:
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where a = exp(-βθ τ ), 21 avb −= , βθ is the rate constant,
mt is a thermal excitation process drawn from Gaussian
distribution N(0, Q), τ is the discretization time step and v is
the steady-state root-mean-square velocity. Assuming that
each particle forms a local Gaussian, the particle transition
probability can be computed as:
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where σ is the variance of the Gaussian kernel.
3.4 The complete algorithm

By formulating MHT in the importance sampling
framework, we have derived the desired posterior estimates,
rather than the maximum likelihood estimates. We can

therefore represent the posterior using the set of particles and
propagate them to the next frame. Because the particles are
drawn from the mixture of all the modes (i.e., the importance
function), this algorithm is more robust than single-hypothesis
approaches, and can recover quickly after large distractions.
The proposed mode-based MHT technique, cast in the
importance sampling framework, is summarized as follows:

1. Generating importance function:
a) Given the particle set obtained at t-1, i.e., { i

tX 1
ˆ

− , i
t 1−π , i =

1,…,I}, draw K raw samples k
tX 1−

, k = 1, …, K, from the

set. Passing the raw samples through the system dynamics
(Equation (12)), we obtain the predicted raw samples k

tX .

b) For each raw sample k
tX , find the best-fit contour l

tX
~ , i.e.,

the mode within its neighborhood. A robust and efficient
dynamic programming based mode-finding process is
explained in detail in Section 2.2. After finding the modes,
we generate the importance function using Equation (9).

2. Importance sampling:
a) Draw I particles ( i

tX̂ , i = 1,…,I ) from the importance

function (Equation (9)).
b) Weight particles using Equations (8),(10),(11) and (13).

3. Output:
Once all the weights are calculated, the probabilistic
tracking result can be estimated by this newly obtained

particle set { i
tX̂ , i

tπ , i = 1,…,I } [6][7].

4. Application in Human Head Tracking
In the experiment reported in this section, we use 30 normal

lines along the ellipse contour, i.e., M = 30. Each line is 21
pixels long, i.e., N = 10, and we use 20 particles during the
tracking, i.e., I = 20. The tracking algorithm is implemented in
C++ on Windows platform. No attempt is made on code
optimization, and the current system runs at 10 frames/sec on a
standard PIII 933 PC.

A challenging real-world video sequence in a cluttered

(299) (322) (324)

(458) (467) (469)

Figure 3: Tracking results of MHT. The tracker tracks through
out the sequence. In frames 458-467, the tracker is distracted by
partial occlusion. But the correct hypothesis emerges in frame 469,
and the tracker resumes tracking reliably.

(299) (322) (324)

(458) (467) (469)

Figure 2: Tracking results with a single hypothesis. Beginning at
frame 299, the tracker is distracted by the sharp edge of the blinder.
The distraction becomes larger over time (e.g., frame 322). The
tracker resumes tracking again at frame 324 when the person happens
to move to the distracting area. In frame 458, the tracker is distracted
by occlusion and does not recover afterwards.



environment with 499 frames is used in the experiment. The
sequence simulates various tracking conditions, including
appearance changes, quick movement, out-of-plane head
rotation, shape deformation, camera zoom in and out, and
partial occlusion. Referring to Figures 2-4, note that the
blinds and the door (e.g., sharp edges and clutters) impose
great challenges to any visual tracking algorithms.

The mode-based MHT enables us to deal with severe
distractions. Twenty hypotheses (I=20) are enough to
successfully track the head throughout the sequence. All the
5 parameters of the ellipse are allowed to change. The
tracking results of the single-hypothesis approach and mode-
based MHT approach are shown in Figures 2 and 3 for
comparison. The single-hypothesis approach is easily
distracted, while the MHT is quite robust under various
tracking conditions. Without the sample-refining process, it
would be almost impossible to track in the 5-dimension
parametric state space with only 20 hypotheses.

Furthermore, to understand the importance of the
parametric contour, we compare our parametric contour
model against the traditional non-parametric contour
models. Because of the high degree of freedom in the non-
parametric contour, i.e., M = 30 vs. the 5D ellipse, the local
smoothness constraints are not sufficient to assure the global
shape and the contour is easily distracted by the background
clutter. As shown in Figure 4, when the person moves across
the door from right to left, the sharp edges on the blinds and
the door severely distract the non-parametric contour. For
fine-level comparison purpose, we display the raw contour
results instead of the fitted ellipse for both methods.

5. Conclusion
In this paper, a mode-based MHT technique is proposed

for head tracking. This technique allows us to use a small
number of hypotheses to represent highly non-linear
probabilistic distributions. To ensure real-time performance,

a novel causal contour model is proposed, and techniques
based on an efficient dynamic programming scheme are
developed to refine the raw samples to nearby modes (local
maximums). In addition, a parametric contour model, i.e., the
five-dimensional parametric ellipse, is used for increased
stability and to model the shape prior.

To overcome the common drawback of MHT, i.e.,
producing only the maximum likelihood estimates instead of
the desired posterior, we have further introduced the
importance sampling framework into MHT, and developed an
effective procedure for estimating the posterior from the
importance function. We have tested our proposed technique
on a challenging real-world video sequence and reported
promising tracking results.
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Figure 4: Comparison of our parametric contour model (top
row) and traditional non-parametric contour models (bottom
row). With only five degree of freedom, our contour model is much
more robust. For the non-parametric contours, the tracker is severely
distracted by the sharp edges on the background.


