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ABSTRACT 

3D reconstruction has been widely used in many important 

applications. While extensive research has been done in 3D 

reconstruction, several key issues are still open and the precision of 

the recovered regions is still far from satisfaction. In this paper, we 

propose a novel approach to selecting regions of interest in video 

frames by analyzing multiple spatio-temporal characteristics and 

reconstruct 3D objects based on the selected regions. Firstly, the 

static, location and motion attention are extracted from video frames 

to generate saliency maps. Then, all the video frames are clustered 

and a candidate set of key frames is extracted based on the saliency 

maps, where the key frames are extracted according to the constraints 

in terms of geometry and visibility. Finally, the 3D structure of the 

attention region is recovered using the selected key frames and the 

generated saliency maps. The experiments on real-world indoor and 

outdoor scenes demonstrate that the proposed approach is both more 

accurate (better attention regions) and computationally more efficient. 

 

 Keywords—Visual attention, Video analysis, Key frames 

selection, 3D reconstruction  

1. INTRODUCTION 

With the development of digital photography, high quality videos 

become abundant. Since both geometric accuracy and visual quality 

can be improved by exploiting video data redundancy, video based 

3D reconstruction has become a popular research topic in the 

communities of computer vision, image process and multimedia 

analysis. 

 Generally, video/image based 3D reconstruction systems can be 

classified into two categories: non-calibration based and self-

calibration based. The non-calibration based systems need both 

images and camera parameters to reconstruct 3D objects, e.g., the 

patch-based multi-view stereo software (PMVS) [1] which enforces 

local photometric consistency and global visibility constraints to 

recover 3D structure of an object or a scene being visible in the 

images. In contrast, the self-calibration based systems firstly estimate 

the camera parameters from input images via camera self-calibration 

methods and then recover the 3D points, e.g., Bundler [2]. However, 

the existing methods only provide 3D structure of a whole scene 

whereas people only pay attention to the regions which attract their 

interest in most of the situations. These methods waste much 

computation power on reconstructing the regions of un-interest and 

the reconstructed 3D models cannot give prior to the favorite regions.  

People always pay more attention to the visually salient regions 

[3] which can be obtained by visual attention analysis. Much 

research on visual attention analysis has been studied and widely 

used in computer vision, artificial intelligence and multimedia 

processing [4-8]. Most of the pioneer work focused on still images 

[4][5], which mainly utilized static information. Recently, video 

attention analysis attracts much more attention. Abdollahian and 

Delp [6] combined static and location saliency maps to find regions 

of interest in key frames of home videos. Besides static and location 

attention, motion, which attracts much human attention, has been 

widely used to detect attention regions based on spatio-temporal cues 

[7][8]. Motion vector can be obtained by several methods such as 

optical flow. However, a critical issue is that the estimation of motion 

vector under moving camera is still a challenging problem and the 

motion attention analysis only from the video viewer’s perspective is 

not enough.  

Considering the extensive applications of visual attention analysis 

on region of interest detection, we propose an approach for spatio-

temporal attention region generation to enhance the video-based 3D 

reconstruction. Our approach is tailored to the characteristics of 

video-based 3D reconstruction including erratic camera motion and 

the emergence of unexpected objects. In contrast with the traditional 

3D reconstruction, our enhanced approach is able to obtain better 3D 

model accuracy and lower computational cost. The framework 

overview of the proposed approach is illustrated in Fig.1.  

As shown in Fig.1, the flow of our proposed method consists of 

three steps: 1) video based visual attention analysis, 2) key frames 

selection and 3) enhanced 3D reconstruction. Firstly, the static, 

location and motion attention are combined to generate the frame 

saliency map for each frame. Then, all frames are represented with 

GIST descriptors and clustered by K-means [9]. For each category of 

the clustering, a category saliency map is calculated by averaging the 

involved frame saliency maps. According to the distance between the 

frame saliency map and the category saliency map, a number of 

frames are selected from each category to generate a candidate set of 

key frames. Geometric and visibility constraints are considered for 

the final key frames selection. Finally, the 3D structure is recovered 

using the improved PMVS only on the regions of interest 

corresponding to the frame saliency maps. 
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Fig.1. Framework of video based 3D reconstruction with spatio-temporal attention analysis 

Compared with the existing approaches, the contributions of 

our work can be summarized as two perspectives: (1) we propose a 

novel approach for video attention region detection, which 

generates a combined saliency map to represent the regions of 

interest. Particularly, the integration of static, location and motion 

attention analysis improves the accuracy of attention region 

detection; (2) we propose a key frame extraction approach 

according to the saliency map and geometric and visibility 

constraints to enable the enhanced 3D reconstruction from video 

sequence. 

The rest of the paper is organized as follows. The details of 

video attention analysis, video frames clustering and key frame 

extraction, and 3D reconstruction are described in Section 2, 3, and 

4 respectively. Experimental results are reported in Section 5. We 

conclude the paper with future work in Section 6. 

2. VIDEO ATTENTION ANALYSIS 

Since the visually salient regions always attract human’s attention, 

we employ the visual attention analysis to extract the regions of 

interest in the video. The attention analysis is comprehensively 

performed in terms of static, location and motion in video 

sequence. 

2.1. Static attention analysis 

Static objects may attract human attention, which is referred as the 

static attention. Contrast based attention analysis [4-8] takes the 

notion that the center-surround structure of receptive field provides 

human visual system (HVS) sensitivity to feature contrast. 

Information theory based methods [10] adopt the premise that 

visual attention proceeds entirely by maximizing the information 

sampled from an image. Contrast and information sampling are 

two factors used to evaluate saliency in computational visual 

attention. Motivated by [7], we integrate the contrast and 

information to calculate saliency map as follows:  

 ( , ) ( , ) ( , )               (1)staticMap x y Con x y ID x y   

where Con(x, y) and ID(x, y) are contrast and information density 

of point(x, y) and normalized to [0, 1]. 

2.2. Location attention analysis 

Location is another important factor affecting human attention. 

Considering the common sense of photography, the photographers 

always lay the content of interest on the central part of the still 

images, and the motion of the camera always follows the 

photographers’ attention.  

We utilize the feature in terms of horizontal (H), vertical (V) 

and radial (R) properties to represent the camera motion which can 

be estimated using Integral Template Matching technique [11]. 

With the 3-parameter motion model, the calculation of the three 

maps for H, V and R directions can be formulated as equations (2), 

(3), and (4), respectively.  
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where (i, j) is the pixel location, r represents the distance of pixel 

from the center of the frame and rmax is the maximum value of r in 

the frame. kH, kV and kr are constants whose values were 

experimentally found to be optimum at 16,12 and 0.5 respectively 

in our work. 

The final location saliency map is obtained as follows: 

                     (5)loc H V RMap Map Map Map    

2.3. Motion attention analysis 

In previous video-based motion attention analysis [7-9], the region 

containing a moving object was considered to attract more 

viewers’ attention. However, motion attention analysis only from 

the video viewers’ perspective is not rigorous for the interest 

region detection in the videos captured by moving camera. Our 

approach analyzes the motion attention from the perspectives of 

both the video viewers and the photographers. From the 

perspective of viewers, we analyze which region attracts more 

viewers’ attention. From the perspective of photographers, we 
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investigate which area the photographers prefer to record from the 

real-world.  

In the scene videos, from the viewers’ perspective, HVS is more 

sensitive to the region with high motion intensity than 

the others. However, from the point of view of photographers, the 

moving objects with intensive motion destroy the view of the whole 

scene and only appear for a very short time. This is an irreconcilable 

conflict between photographers and viewers. In addition, the static 

objects in the video will be detected to be moving in some situations 

because of the motion of the camera. The detected motion intensity 

of a static object far from the moving camera is bigger than that of a 

nearer one and relies on the distance between the static object and the 

camera. However, the photographers generally would like to show 

the objects closed to the camera instead of the farthest or the nearest 

ones and the viewers always pay more attention to the nearby objects 

rather than the farthest ones.  

In our approach, the regions which attract both the photographers 

and the viewers’ attention regarding the moving camera are motion 

attention regions. Moreover, the motion attention regions belong to 

neither the maximal nor the minimal motion intensity region and the 

visual saliency is inversely proportional to the motion intensity.  

We utilize optical flow to detect the motion intensity and 

represent it with UV. The limitation of optical flow under moving 

camera is that it may detect the moving objects with low-texture to be 

still, such as white wall or sky. 

The mean and standard deviation of motion intensity for each 

frame are a kind of important description. The motion saliency map 

is generated as follows: 
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where Mean and SD represent the mean and standard deviation 

motion intensity respectively, δ is the loosing coefficient which is 

empirically set to be 1.0 in the experiments, UB is the upper bound of 

the error for optical flow detection for the distant low-textured 

regions whose value is experimentally set to be 0.1.  

2.4 Attention fusion 

Static saliency map represents the static object which attracts user’s 

attention. The location saliency map describes the distribution of 

human visual sensibility. The visual salient regions with high human 

visual sensibility attract more human attention than the lower one. 

Therefore we generate a location enhanced static saliency map 

utilizing static saliency multiply the location saliency on each point 

of the frame. Motion saliency map describes the movement in video 

sequences to which human vision system is sensitive. 

We propose a dynamic fusion technique and the weights of static 

and motion saliency is determined by the ratio between the mean of 

the static and motion saliency map for each frame. The final saliency 

map for each frame is obtained by fusing three saliency maps as 

follows: 
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where λ is the dynamic weight for the motion attention, Meanstatic and 

Meanmotion are the mean of the static and motion saliency map, 

respectively.  

3. ATTENTION BASED KEY FRAME SELECTION 

To select frames for 3D reconstruction, we propose a novel key frame 

extraction method including three steps. We firstly cluster all the 

frames into k categories based on GIST descriptors. Then for each 

category, a category saliency map is calculated by averaging the 

involved frame saliency maps. According to the distance between 

frame saliency map and category saliency map, we select frames from 

each category with a predetermined ratio to generate a candidate set 

of key frames. Any k frames coming from the candidate set form a 

frame group if they belong to different categories. We finally sort the 

entire possible frame groups with geometric and visibility constraints 

and determine the key frame group. 

3.1 GIST clustering 

The goal of clustering is to represent the video content by identifying 

a set of iconic views corresponding to the dominant aspects in 3D 

scene. If there are many frames belonging to very similar viewpoints, 

some of them will at least have a similar image appearance, which 

can be efficiently matched using a low-dimensional global 

description of their pixel patterns. We utilize K-means with the 

global descriptor GIST which was found to be impactful for grouping 

images by perceptual similarity [9] to cluster frames.  

3.2 Candidate set of key frames generation  

We generate an average saliency map for each category based on the 

frame saliency maps which belong to the same category, namely 

category saliency map. The Euclidean distance between the frame 

saliency map of category member and the category map is used to 

rank frames. We select a predetermined rate of frames from each 

category that are closer to the category saliency map to constitute a 

candidate set of key frames and at least one frame is selected from 

each category. The final key frames come from the set. We calculate 

the rate as follows: 

  =1/ ( / )                                  (9)n k  

where η is the rate, n is the total number of frames in the video 

sequence and k is the category number. 

For each category, we calculate the number of selected frames as 

follows: 

=                                (10)i iS n     

where Si is the number of selected frames for the ith category, ni is 

the total number of frames in the ith category. 
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3.3 Key frame selection 

To select the key frame group for 3D reconstruction, we sort all 

frame groups using geometric and visibility constraints. 

The geometric constraints perform verification of each key 

frames group to confirm whether frames in each group share a 

common 3D structure. We extract SIFT features [12] and use 

QDEGSAC algorithm [13] to estimate a fundamental matrix. For a 

specific frame group, each frame has a number of inliers to the 

others in the same group. The sum of inliers of a frame group is a 

new measure for the group namely the geometric constraints score. 

We rank the frame groups with the score by descending order and 

the results will affect the final key frame selection. 

Frames in different frame groups correspond to different 

viewpoints. The visibility constraints describe the viewpoints from 

which a real-world point is visible. For the frames in the candidate 

set, we recover their viewpoints order using the method in [14] and 

then obtain their viewpoints rankings. Given a group, we define the 

visibility loss (VL) as follows: 

1
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

 


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where k is the category number and Oi represents the viewpoint 

ranking for the ith frame of the group. The VL is called visibility 

constraints score for a given frame group. We rank the possible 

frame groups with VL by ascending order and the results will be 

another influence factor for the final key frame selection. 

For each frame group, we add the ranks of geometric and 

visibility constraints, and determine the key frame group with the 

smallest sum-rank. If several frame groups own the same smallest 

sum-rank value, each of them can be selected as the key frame 

group. 

4. ATTENTION ENHANCED 3D RECONSTRUCTION 

We propose an attention enhanced 3D reconstruction method 

which improves the patch-based multi-view stereo algorithm 

(PMVS) [1] to recover 3D information. Our method is a non-

calibration based algorithm. Compared with the previous 3D 

reconstruction, our enhanced 3D reconstruction not only gives the 

prominence to the regions of interest but also relieves the 

computational cost in 3D reconstruction 

Firstly, the camera parameters are estimated from the key 

frames automatically with the structure-from-motion approach in 

Bundler [2]. Then we detect blob and corner features in each key 

frame using the Difference-of-Gaussians (DOG) and Harris 

operators. For each key frame, the regions of interest consist of the 

pixels with high visual saliency. According to the frame saliency 

maps, we remove the detected image features which distribute on 

the regions of un-interest. Finally, the retained image features 

instead of the whole detected features are supplied to recover the 

3D information through a simple match, expand, and filter 

procedure: (1) initial feature matching: the retained image features 

are firstly matched across multiple frames with the epipolar 

consistency, yielding a sparse set of patches associated with salient  

(a) (b) (c) (d) (e)  

Fig.2. Examples of visual attention analysis results for indoor scene. 
(a) Original frame, (b) Static attention, (c) Location attention, (d) 
Motion attention, (e) Fused attention. 

(a) (b) (c) (d) (e)
 

Fig.3. Example of visual attention analysis results for outdoor scene. 
(a) Original frame, (b) Static attention, (c) Location attention, (d) 
Motion attention, (e) Fused attention. 

frame regions. Given these initial matches, the following two steps 

are repeated n times (n=3 in our experiments); (2) patch expansion: 

we utilize a technique similar to [15] to spread the initial matches to 

nearby pixels and obtain a dense set of patches; (3) patch filtering: 

filter rely on the visibility consistency are employed to eliminate 

erroneous matches. 

5. EXPERIMENTAL RESULTS 

We conduct three groups of experiments: visual attention analysis, 

frame clustering and key frames selection, and 3D reconstruction. 

Our approach is evaluated on 12 real-world videos including both 

indoor and outdoor scenes. We present two instances for illustration 

as shown in Fig. 2 and Fig. 3. The first video is captured in office 

environment (Fig. 2(a)), and the second one is taken from outdoors 

scene (Fig. 3(a)). The two videos include 441 and 261 frames, 

respectively. 

5.1 Visual attention analysis 

Fig. 2 shows an example of indoor scene. We select two frames from 

different viewpoints arbitrarily as examples. Location attention in Fig. 

2(c) focuses on the center of the frames, Fig. 2(b) and Fig. 2(d) show 

that the static and motion attention analysis results contain the target 

area, but they all include additional noise information. Compared 

with the two saliency maps, the combined saliency maps in Fig. 2(e) 

show the printer region more accurate. 

Meanwhile, the example in Fig. 3 shows an outdoor building. As 

shown in Fig. 3(b) and Fig. 3(d), both the static and motion saliency 

map almost fail to describe the target region especially for the second 

row. However, the final result is very exciting even though many 

unexpected areas are detected as regions of interest in Fig. 3(b) and 

Fig. 3(d). The saliency maps in Fig. 3(e) show that our method 

succeeds in removing most of the unexpected regions such as sky, 

road and trees etc. Although the second map in Fig. 3(e) contains a 
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long significant region which is unexpected, Fig. 3(e) is much better 

than Fig. 3(b) and Fig. 3(d). It is accurate enough for the next 3D 

reconstruction procedure. 

5.2 Key frame selection 

The key frame selection results are shown in Fig. 4 and Fig. 5. The 

iconic image selection result using the method in [9] is also 

provided as the comparison. 

In Fig. 4 and Fig. 5, some of the frames selected by our 

approach and the method in [9] are the same. The saliency maps 

which cannot well represent the target object region are signed 

with a yellow bounding box. In Fig. 4, there is only one yellow 

box in Fig. 4(b) for our results compared with the three in Fig. 4(d) 

for the results using the method in [9]. In Fig. 5, the number of 

yellow box for our approach and the method in [9] are one and five, 

respectively. Since the saliency map will directly affect our 3D 

reconstruction, the two experiments prove that our key frame 

selection algorithm is better than the iconic images selection 

method [9]. 

Key frames are from variant viewpoints and the disparity 

between two adjacent frames is not too large. Moreover, the 

camera motion is complicated. Therefore, although the key frames 

are sorted according to the visibility constraints, the order is not 

particularly accurate. 

Not all of the saliency maps under key frames appear to be 

accurate. However, it is worth noting that there are not many 

unexpected regions simultaneously owned by distinct saliency 

maps. That means when we match frames, since the extracted 

points only distribute on the visually salient regions, it is difficult 

to find a point corresponding to the point from the unexpected 

region. From this perspective, accurate saliency maps are not 

prerequisite as long as they do not share the same unexpected 

region. 

5.3 Evaluation of 3D reconstruction 

For the indoor scene in Fig. 6, we provide three groups of frames 

to reconstruct 3D models: iconic images results [9], our key frames 

extraction results and our improved PMVS results. The time-

consuming for our key frames extraction is 2.5 hours compared 

with the iconic images extraction is 47 minutes. The computational 

costs for the three 3D reconstruction processes are 3.5 hours, 3.5 

hours and 1 hour respectively. Therefore, the total computational 

cost for our enhanced 3D reconstruction is lower than the other 

two methods. Here the second column of Fig. 6(c), Fig. 6(d) and 

Fig. 6(e) is the views from the right-side viewpoint. From the right-

side viewpoint, it is obvious that the 3D model in Fig. 6(d) is more 

accurate than that in Fig. 6(c) at the region with a yellow rectangle 

frame which illustrates that our key frames extraction approach is 

effective. Although the saliency map in Fig. 6(b) is not very 

accurate, the 3D model in Fig. 6(e) shows that only the user 

attention region is reconstructed and the accuracy is similar to the 

results in Fig. 6(d). 

(a)

(b)

(c)

(d)
 

Fig.4. The frames are clustered into eight categories, the selected 

frames and saliency maps are shown. (a) is the selected key frames 

with the proposed algorithm; (b) is saliency maps of (a); (c) is the 

iconic images using the method proposed in [9]; (d) is saliency maps 

of (c). We mark the unsatisfactory saliency maps with a yellow 

bounding box. 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

 Fig.5. The frames are clustered into sixteen categories, the selected 

frames and saliency maps are shown. (a) and (b) are the selected key 

frames with the proposed algorithm; (c) and (d) are saliency maps of 

(a) and (b); (e) and (f) are the iconic images using the method 

proposed in [9]; (g) and (h) are saliency maps of (e) and (f). We mark 

the unsatisfactory saliency maps with a yellow bounding box.  

(a) Original frame (b) Saliency map of (a)

(c) 3D models reconstructed using the iconic frames from [9] 

(e) 3D models reconstructed using our improved PMVS results

(d) 3D modes reconstructed using our key frames extraction results

 
Fig.6. An example for the printer’s 3D reconstruction. The first 

column of (c) (d) and (e) is views from the forward viewpoint; the 

second column is views from a right side viewpoint. 
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(a) Original frame (b) Saliency map of (a)

(d) 3D model reconstructed using our key frames extraction results

(e) 3D model reconstructed using our improved PMVS results

(c) 3D model reconstructed using the iconic frames from [9] 

 
Fig.7. An example for the old building’s 3D reconstruction. The first 

column of (c) (d) and (e) is views from the forward viewpoint; the 

second column of (c) is a vertical view and of (d) and (e) is views 

from a right side viewpoint; the third column is the detail of the 

“door” region.  

In the outdoor video, the scene is much more complicated than 

the indoor scene. We also provide three groups of frames to 

reconstruct 3D models and the computational costs are 8 hours, 8 

hours and 1.5 hours respectively. We spent 2 hours for our key 

frames extraction and 40 minutes for iconic images extraction [9]. 

Compared with the first two groups of frames our approach has lower 

computational cost. In Fig. 7, the first column of Fig. 7(c) and Fig. 

7(d) is the views from the forward viewpoint and the 3D model in 

Fig. 7(d) is more integrated than the one in Fig. 7(c). From the 

second column of Fig. 7, it is apparent that the “door” region with a 

yellow rectangle frame in Fig. 7(c) was not reconstructed well, and 

the position of the door is totally wrong. However, the result in Fig. 

7(d) is better. The recovered 3D points on the “door” region in Fig. 

7(d) basically share a same plane which is in accordance with the 

practical situation and the position of the “door” region is right. This 

proves that our key frames extraction approach is effective. The 

enhanced 3D model shown in Fig. 7(e) focuses on the visual 

attention region only and the accuracy is similar to Fig. 7(d). 

6. CONCLUSION 

In this paper, we have presented a novel approach to enhancing video 

based 3D reconstruction. Relying on visual attention analysis, we are 

able to make 3D reconstruction focus on the user attention regions 

which relieves the computational cost. In addition, we consider 

geometric and visibility constraints for key frames extraction and 

improve the reconstruction accuracy. The experimental results 

validate that the proposed approach is an efficient and robust solution 

for user attention regions 3D reconstruction on both indoor and 

outdoor scenes. Our approach is also able to be used in many other 

applications such as video coding, summary generation, and adaptive 

browsing on small screens.  

For the future work, we will investigate reconstructing objects 

from more complicated videos and extend our method to wider range 

of applications.  
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