
Real-time Speaker Tracking Using

Particle Filter Sensor Fusion
Yunqiang Chen and Yong Rui

Abstract— Sensor fusion for object tracking has become an

active research direction during the past few years. But how to do

it in a robust and principled way is still an open problem. In this

paper, we propose a new fusion framework that combines both

the bottom-up and top-down approaches to probabilistically fuse

multiple sensing modalities. At the lower level, individual vision

and audio trackers are designed to generate effective proposals

for the fuser. At the higher level, the fuser performs reliable

tracking by verifying hypotheses over multiple likelihood models

from multiple cues. Different from the traditional fusion algo-

rithms, the proposed framework is a closed-loop system where

the fuser and trackers coordinate their tracking information.

Furthermore, to handle non-stationary situations, the proposed

framework evaluates the performance of the individual trackers

and dynamically updates their object states. We present a real-

time speaker tracking system based on the proposed framework

by fusing object contour, color and sound source location. We

report robust tracking results.

Index Terms— Sensor fusion, tracking, particle filter, real-time.

I. INTRODUCTION

Distributed meetings and lectures are gaining significant

attentions during the past few years [1], [2]. A key technology

component in those systems is a reliable speaker tracking

module. For instance, if the system knows the speaker location,

it can point a camera at the speaker dynamically so that remote

Manuscript received March, 2003; revised November 11, 2003.

Yunqiang Chen is with Siemens Corporate Research.

Yong Rui is with Microsoft Research.

audience can have a zoomed-in view of the active speaker.

There are commercial video conferencing systems, e.g., [3],

that provide speaker tracking based on audio sound source

localization (SSL). While this is much better than using a static

camera, it is far from sufficient. SSL is a good speaker detector

but not a good speaker tracker especially when the person

is not constantly talking. Reliable speaker tracking therefore

involves high-performance audio-based SSL, vision-based per-

son tracking and sensor fusion techniques. We reported our

audio- and vision-based tracking techniques in [4] and [5]

respectively. In this paper, we focus on novel sensor fusion

frameworks.

In general, there are two existing paradigms for sensor

fusion: bottom-up and top-down. Both paradigms have a fuser

and multiple sensors. Throughout the paper, we use the term

“sensor” in a generalized way. It represents a logical sensor

instead of a physical sensor. For example, both contour sensor

and color sensor are based on the same physical sensor –

a video camera. Depending on the complexity of the sensor

algorithms, the sensors can perform different tasks. For ex-

ample, some perform tracking and are called trackers. Others

perform verification (i.e., computing the likelihood of a giving

hypothesis) and are called verifiers.

The bottom-up paradigm starts from the sensors. Each

sensor has a tracker and it tries to solve the inverse problem –

estimating the unknown object state (e.g. object location and

orientation) based on the sensory data. Once the individual

tracking results are available, distributed sensor networks [6]

or graphical models [7] are used to fuse them together to

generate a more accurate and robust result in the fuser. To

make the inverse problem tractable, assumptions are typically

made in the trackers and the fuser, e.g., system linearity and

Gaussianality are assumed in the Kalman tracker [8] and the

fuser [6]. While these assumptions make the problem tractable,

they inherently hinder the robustness of the bottom-up scheme.

For example, the Gaussian assumption of noise is almost never

true in real life, but the bottom-up scheme does not have a

mechanism to detect and correct the possible errors caused by

the simplified assumptions.

The top-down paradigm, on the other hand, emphasizes

on the top – it has an intelligent fuser but simple sensors

(i.e., verifiers) [9], [10]. It tries to achieve tracking by solving

the forward problem – evaluating the likelihood of a set

of given hypotheses using the sensory data. First, the fuser

generates a set of hypotheses (also called particles – we use

them interchangeably in the paper) to cover the possible state

space. All the hypotheses are then sent down to the sensor

for verification. The sensors compute the likelihood of each

hypothesis and report back to the fuser. The fuser then uses the

weighted hypotheses to estimate the distribution of the object

state. Note that it is usually much easier to verify a given

hypothesis than to solve the inverse tracking problem (as in the

bottom-up paradigm). Therefore, more complex models (e.g.,

non-linear and complex object shape models) can be used in

the top-down paradigm. This in turn results in more robust

tracking. There is, however, inefficiency with this paradigm.

Because the sensors have verifiers instead of trackers, they

do not help the fuser to generate good hypotheses. The

hypotheses are semi-blindly generated from the transition prior

(i.e., motion prediction) in [9]. When a meeting participant can

move freely as in our scenario, a large number of hypotheses

are needed in order to cover all the possible state space and

that costs expensive computation. Many hypotheses can land

on low-likelihood regions thus wasted [11]. In [12], an external

tracking module is used to guide the hypothesis generation.

But the whole system then depends on the robustness of the

external module.

To summarize, the bottom-up paradigm provides fast best-

effort tracking, but is at the expense of simplified assump-

tions. On the other hand, the top-down paradigm does not

require simplified assumptions but needs expensive computa-

tion because the hypotheses can be very inefficient. In this

paper, we propose a new fusion framework that integrates

the two paradigms to achieve robust real-time tracking. First,

it is a closed-loop architecture where the fuser and sensors

interact to exchange tracking information. For example, the

fuser uses trackers’ outputs to construct effective hypotheses,

and trackers use fuser’s output to guide their own tracking.

Second, to effectively utilize multiple sensors, an evaluation

and adaptation scheme is proposed to evaluate the reliability of

various trackers. Different trackers contribute differently based

on their reliability. For failing trackers, they are re-initialized.

This adaptation scheme greatly enhances the system’s ability

to handle non-stationary situations.

The rest of the paper is organized as follows. We first

present a proposal-centric view of particle filtering in Section

II, setting the stage for the new sensor fusion framework. In

Section III, we present the complete fusion algorithm and

summarize its characteristics. To apply the new algorithm

to real-time speaker tracking, three trackers based on head

contour, color, and sound source localization are designed in

Section IV. Together, they generate good proposals for the

fuser. In Section V, we discuss the verifiers and their likelihood

models based on which the hypotheses are evaluated. In

Section VI, we further discuss the adaptation scheme: how

to evaluate and adapt trackers to handle non-stationary envi-

ronment. In Section VII, we conduct experiments and report

robust tracking results on challenging real-world sequences.

We give concluding remarks in Section VIII.

II. GENERIC PARTICLE FILTERING

In this section we discuss the general particle filtering

technique, setting the stage for the sensor fusion framework

proposed in the next section. In CONDENSATION [13],

extended factored sampling is used to explain how the particle

filter works. Even though easy to follow, it obscures the

role of proposal distributions. In this section, we present an

alternative formulation of the particle filtering theory that is

centered around proposal distributions. Proposal distributions

can be used both to improve particle filter’s performance and

to provide a principled way for sensor fusion.

Let
����� �

represent the object states (e.g. object position

and size) that we are interested in and � ��� � represent the

observation (e.g. audio signal or video frame) from time �
to 	 .

A non-parametric way to represent a distribution is to use

particles drawn from the distribution. For example, we can

use the following point-mass approximation to represent the

posterior distribution of
�

:

�
� � ��� ��� ��� � �������� �� � � �����! #"%$&(') �+* � ��� �(� (1)

where � is the Dirac delta function, and particles
�-, �/.��� �

are

drawn from �0� �1��� � � � � � � � . The approximation converges in dis-

tribution when
�

is sufficiently large [14], [11]. This particle-

based distribution estimation is, however, only of theoretical

significance. In reality, the posterior distribution is the one that

needs to be estimated, thus not known. Fortunately, we can in-

stead sample the particles from a known proposal distribution23� ����� � � � � � � � and still be able to compute �0� �1��� � � � � � � � .
Definition 1 [15]: A set of random samples 4 �-, �%.��� �65(7 , �%.��� �98

drawn

from a distribution 23� � ��� ��� �:� � �;� is said to be properly weighted

with respect to �
� ����� � � � � � � � if for any integrable function < � �

the following is true:

=?> � < � ����� � �@���BA%C/D�FEHG �� � � � < � � , �/.��� � � 7 , �%.��� �
(2)

Furthermore, as
�

tends to infinity, the posterior distribution� can be approximated by the properly weighted particles

drawn from 2 [15], [11]:

�
� � ��� ��� ��� � ����� �� � � � 7 ,
�%.��� �
I ��� J"/$&�') �K* � ��� ��� (3)

L7 , �/.��� � � �0� � � � � � � , �%.��� � � �
� � , �/.��� � �23� � , �/.��� � � � � � � � (4)

7 , �/.��� � � L7 , �/.��� �M �� � � L7 ,
�/.��� � (5)

where
L7 , �%.��� �

and
7 , �/.��� �

are the un-normalized and normalized

particle weights.

In order to propagate the particles 4 � , �/.��� � 5(7 , �%.��� � 8
through

time, it is beneficial to develop a recursive calculation of the

weights. This can be obtained straightforwardly by considering

the following two facts:

1) Current states do not depend on future observations.

That is,

23� ����� � � � � � � ��� 23� ����� �ON � � � � � �ON � � 23� ��� � �P��� �ON � 5 � � � � �
2) The system state is a Markov process and the observa-

tions are conditionally independent given the states [13],

[11], i.e.:

�
� � ��� ����� �0� � �6� �QR � � �0� � R � � R N � ��
� �:� � ��� � ��� �����
�QR � � �0� � R � � R �

(6)

Substituting the above two equations into Equation (4), we

obtain the recursive estimate for the weights:

L7 , �%.� � �0� � � � � � � , �%.��� � � �0� � , �%.��� � �23� � , �%.��� �ON � � �:� � �ON � � 23� � , �%.� � � , �/.��� �ON � 5 ��� � ���� L7 , �%.�ON � �
� �:� � �9� � , �/.��� � � �0� � , �/.��� � ��0� � , �/.��� �ON � � �0� ��� � �ON � � � , �%.��� �ON � � 23� � , �%.� � � , �/.��� �ON � 5 ��� � ���� L7 , �%.�ON � �0� � ��� � , �/.� � �0� � , �/.� � �
� � , �%.�ON � �23� � , �/.� � � , �%.��� �ON � 5 �:� � ��� (7)

Note that the particles are now drawn from the proposal

distribution 23� ��� � �P��� �ON � 5 � � � � � instead of from the posterior� . To summarize, the particle filtering process has three steps:

1. Sampling step:
�

particles
� , �%.� 5 � � � 5������/5 � are sampled

from the proposal function 23� �1� � �P��� �ON � 5 � � � � � .
2. Measurement step: Compute the particle weights using

Equation (7).

3. Output step: The weighted particles can be readily used

as the tracking results. The conditional mean of
� �

can

be computed using Equation (2) with < � � � ��� � � �
, and

conditional covariance of
� �

can be computed using Equation

(2) with < � � � �(��� � � ����
.

This proposal-centric view sheds new lights on the role of

the proposal distribution in the particle filtering process. It pro-

vides a way to guide the particle generation. In practice, there

are infinite number of choices for the proposal distribution, as

long as its support includes that of the posterior distribution.

But the quality of proposals can differ significantly. For exam-

ple, poor proposals (far different from the true posterior) will

generate particles that have negligible weights, thus wasted.

On the other hand, particles generated from good proposals

(similar to the true posterior) are highly effective. Choosing

the right proposal distribution is therefore of great importance.

Indeed, the proposal is not only at the center of the particle

filtering process, but also provides a principled way to perform

sensor fusion as explained in next section.

III. SENSOR FUSION

Good proposals generate effective particles. This is espe-

cially important when we process multiple sensors and the

problem state space has high dimensionality. In the context

of tracking, various approaches have been proposed to ob-

tain more effective proposals than the transition prior (i.e.,�
� � ��� � �ON � �) [13]. If there is only a single sensor, an auxiliary

Kalman-filter tracker can be used to generate the proposal [16].

When multiple sensors are available, a master-slave approach

is proposed in [12], where a slave tracker (color-blob tracker)

is used to generate proposals for the master trackers (a particle-

based contour tracker). While this approach achieves better

results than the single sensor approaches, its master-slave

structure breaks the symmetry between trackers. Furthermore,

because the slave tracker is not included in the overall obser-

vation likelihood model, it may discard complementary and

important tracking information from the slave tracker [12].

In this paper, we present a two-level closed-loop particle

filter architecture for sensor fusion, with the proposal distribu-

tion being the focal point. It integrates the benefits of both the

bottom-up and top-down paradigms. For robustness, multiple

complementary sensory data are utilized at both levels. At

the lower level, individual trackers based on different cues

perform independent tracking and report tracking results up to

the fuser (Section IV). At the upper level, the fuser constructs

an informed proposal by integrating tracking results from all

the trackers. Particles are sampled from this proposal and sent

down to the verifiers to compute their likelihood (Section V).

The set of evaluated particles constitute a good estimate of

the posterior [11]. The complete algorithm for the proposed

sensor fusion framework is given as follows (refer to Figure

1):

1. Tracking by individual trackers: Using appropriate as-

sumptions (e.g., Gaussianality and linearity), each tracker

generates fast but perhaps less robust tracking results

Fig. 1. Fusion diagram.

2��3� � �� � � ���� �ON � 5 � �� � � � , where
�

is the index for individual

trackers. Different trackers are designed in Section IV.

2. Generating proposal distribution: The fuser integrates the

tracking results from multiple trackers to form a mixture of

Gaussian distribution as the final proposal:

23� ��� � ����� �ON � 5 � � � � ��� �
�

� � I 2 � � � �� � � ���� �ON � 5 � �� � � �
where

� � is the reliability of tracker
�

and is estimated

dynamically in Section VI.

Note that because the final proposal is a mixture of all the

individual proposals, our proposed algorithm is robust even

when some of the trackers fail. In fact, as long as one of the

individual proposals covers the true object state, particles will

be generated in the neighborhood of the true state and will

get high likelihood score in step 3, thus keeping track of the

object.

3. Generating particles and weights: Particles are sampled

from the proposal distribution 23� �1� � ����� �ON � 5 � � � � � and then

sent down to the verifiers to compute their weights:

L7 , �%.� � L7 , �/.�ON � �0� � ��� � , �/.� � �0� � , �/.� � �
� � , �%.�ON � �23� � , �/.� � � , �%.��� �ON � 5 �:� � ��� (8)

Assuming independence between the likelihoods from differ-

ent verifiers, the overall likelihood is:

�
� � � � � , �/.� ��� Q
�

�0� � �� � � , �%.� �
(9)

The set of weighted particles can be readily used as the

estimate of the posterior distribution (Step 3 in Section II).

Note that each sensor has both a tracker and a verifier. The

tracker tries to solve the inverse problem efficiently. Small

errors are therefore allowed and can be corrected later by the

fuser and verifier. Simplifications (e.g., constant object color

histogram or Gaussianality) are usually assumed in the tracker

to ensure efficiency. The verifier, on the other hand, only

needs to verify a given hypothesis, which is much easier than

solving the inverse problem. More comprehensive and accurate

likelihood models �
� � ��� � ��� can therefore be exploited in the

verifier (see Section V). The separation of tracker and verifier

strikes a good balance between efficiency and robustness.

4. Adapting the trackers: To handle non-stationary situations

and potential mis-track, individual trackers need feedback

from the fuser. Object states (e.g., position and size) and at-

tributes (e.g., color histogram) are updated dynamically based

on the fuser’s estimation of the posterior. The reliability of

each tracker is also evaluated based on the performance of the

corresponding proposal. More reliable trackers will contribute

more to the proposal functions and unreliable trackers will be

reinitialized. We discuss this in detail in Section VI.

The above two-level closed-loop sensor fusion framework is

a general framework for combining different cues, individual

trackers and high level object likelihood modeling together. It

is more robust than the bottom-up paradigm because it uses

multiple hypotheses and verifies based on more accurate object

model. It is computationally more effective than the top-down

paradigm because it starts with good proposal distributions.

It is also more reliable than both paradigm because it is

a closed-loop system where object states and attributes are

dynamically updated. In the following sections, we apply this

fusion framework to real-time speaker tracking. We describe

three basic trackers in Section IV. We discuss the verifiers in

Section V. We describe how to update individual trackers in

Section VI.

IV. INDIVIDUAL TRACKERS

Although the verification process can correct some tracking

errors,it is desirable and effective if the trackers can provide

accurate results in the first place. In this section, we design

three trackers based on complementary cues. According to the

set theory, every closed set (e.g., an object) can be decomposed

into two disjoint sets: the boundary and the interior [17].

Since these two sets are complementary, we develop two

vision-based trackers that use two complementary cues (object

contour and object interior color) to track human heads.

We also develop an audio-based SSL tracker which further

complements the vision-based trackers.

We approximate a human head as a vertical ellipse with a

fixed aspect ratio of 1.2:
�1� ��� ���� 5�� �� 5�� �
	

, where � ���� 5�� �� �
is

the center of the ellipse, and
� �

is the major axis of the ellipse.

In Figures 4 and 5, we represent it with a bounding box. A

tracker estimates its belief of the object state
� ��

based on

its own observation � ��
. Note that it is not required for all the

trackers to estimate all the elements in the state vector
� �

. For

example, while the contour tracker estimates all
� ���� 5�� �� 5�� � 	

,

the SSL tracker only estimates
�
��

.

A. The contour tracker

For each frame we use a hidden Markov model (HMM) to

find the best contour ��� . We then use the unscented Kalman

filter (UKF) [5] to track object state
� �

over time. Note the

notations used in this section. In HMM, people use ��� to

represent best states and in UKF people use � � to represent

measurements. We follow these conventions, but we would like

to point out that in our context � � and � � are the same entity

which represents the best detected contour. We summarize the

contour tracker algorithm as follows [5]:

1. Measurement collection: At time 	 , edge detection is

conducted along the normal lines of the predicted contour

Fig. 2. Illustration of parametric contour tracking: The solid curve is the
predicted contour. The dashed curve is the true contour that we want to find.����������� ��� �"! is the true contour point on the � th normal line, which can
be found efficiently by a hidden Markov model.

location (see Figure 2). We use � �� � 4$#&% 5('*) � � 5�+ 	 8
to

denote the edge intensity observation, where the superscript

“1” in � �� represents this is the first sensor (i.e., contour

sensor). The solid curve is the predicted contour. The dashed

curve is the true contour that we want to find. The term

, % 5�'-) � � 5(+ 	
represents the true contour point on the

'
th

normal line. Each normal line has
�/. � 5 �0	 �21 �43 � pixels.

Because of background clutter, there can be multiple edges on

each normal line.

2. Contour detection using an HMM: HMM usually is used

in the temporal domain (e.g., speech recognition). Here we use

it to model the contour smoothness constraint in the spatial

domain. Specifically, the hidden states are the true contour

position , % on each normal line. Our goal is to estimate

the hidden states based on our observations. An HMM is

specified by the likelihood model �0� # % � , % � and the transition

probabilities �0��, % � , % N � � which we discuss next.

3. Likelihood model: With the assumption that background

clutter is a Poisson process with density 5 and the detection

error is normally distributed as
� � � 5�6�7 �

, the likelihood that

, % is a contour is given by [13]:

�0� # % � , % �98 � 3 �: 1�; 6<7 2 5
=?>�

@ � � ACBED � . ��F @ . , % ��G1 6 7 G �
(10)

where H % is the number of detected edges on line
'

and 2 is

the prior probability of the contour not being detected.

4. Transition probabilities: The state transition probabilities

encodes the spatial dependencies of the contour points on

neighboring normal lines. In Figure 2, we can see that the true

contour points on adjacent normal lines tend to have similar

displacement from the predicted position (i.e., the center of

each normal line). This is the contour smoothness constraint

and can be captured by transition probabilities �
��, % � , % N � � ,
which penalizes sudden changes between neighboring contour

points: �
�
, % � , % N � ����� I�� N ,�� > N � >����
. 	�

��	� (11)

where
�

is a normalization constant and
6 � is a predefined

constant that regulates the contour smoothness.

5. Optimization: Given the observation sequence � �� �
4$# % 5(') � � 5�+ 	 8

and the transition probabilities � � � R �
�
��, %�� � ��� � , % � � � 5 � 5 �) �/. � 5 � 	

, the best contour can

be obtained by finding the most likely state sequence � � using

the Viterbi algorithm [18]:

� � ��������D�� B��� � � � � �� ��������� D�� B��� � � 5 � �� �
6. Tracking over time using UKF: UKF extends the regular

Kalman filter [8] to handle non-linear systems. Let the system

be
��� ��� � ���ON � 5 * � � and � � � < � ��� 5! � � , where * � and

 �
are zero-mean Gaussian noises. Let

� �#" �ON � � = � � � �P�ON � 5 * � �@�
and � �#" �ON � � = � < � � � � �ON � 5 * �(� 5� ���(� . The system state

� �
can

be estimated as:

� �� � � �#" �ON � 3%$ � I � � � . � �#" �ON � �
where � � � � � � � , � 5������/5 , % 5������/5 ,�& 	 �

is the measurement and$ �
is the Kalman gain [5]. We use the Langevin process [19]

to model the object dynamics:

��� �'� � ���ON � 5 * � ���
()
* �,+� �

-/.
0
()
* ���ON �1� �ON �

-/.
0 3

()
* � 2

-/.
0 * � (12)

where � � ACBED � .4365 + � , 2 �87 : � . � G .
365

is the rate con-

stant, * � is a thermal excitation process drawn from Gaussian

distribution
� � � 5
9 � , + is the discretization time step and

7
is

the steady-state root-mean-square velocity.

The observation function < � � � � < � � � 5������/5 < % 5 �����%5 < & � � 	 �
represents the relationship between the observation � � � � � �
� , � 5������/5 , % 5������%5 ,:& 	 �

and the state
� �

. Let
� � % 5�� % 	 be line

'
’s

center point, and let the intersection of the ellipse
� �

and the

normal line
'

be point � % , the physical meaning of , % is the

distance between � % and
� � % 5�� % 	 . Further let angle ;�% be line

'
’s orientation, and let

�=< � � % . ����
,
� < � � % . � ��

,
� � � �

,

and
3 � � �!> � � 1 . We can derive the following relationship

between , % and
� �

:

, % � < % � � � 5� �(��� � 3
.@?
A:B�CED
F 5 >G 	 3IH B
FKJ L 5 >M 	,N? CED�F 	 5 >G 	 3 FKJ L 	 5 >M 	 N 3

O ? A B CED�F 5 >G 	 3 H B FKJ L 5 >M 	 N G .P? CED
F 	 5 >G 	 3 FKJ L 	 5 >M 	 N ? A B 	G 	 3 H B 	M 	 . � N? CED�F 	 5 >G 	 3 FKJ L 	 5 >M 	 N
(13)

Because the < � � is nonlinear, unscented transformation is

used to estimate the
$ �

,
� �#" �ON � and � �#" �ON � (see [5]).

A Gaussian distributed proposal function can be formed

based on the contour tracker:

2 � � � �� � � ��ON � 5 � �� ��� � �
� �� 5
Q �� � (14)

where

Q �� is the Kalman filter’s covariance matrix [8].

B. The color tracker

Object interior region properties complement its contour in

tracking. Color based tracking has been widely used in the

literature. We adopt the Meanshift algorithm [20] in our system

as the color tracker. It assumes that the color histogram of

the target object R6S�T R is stable and a recursive gradient decent

searching scheme is used to find the region that is most similar

to RUS
T R .
To track the object in the current frame, previous frame’s

state is used as an initial guess, i.e.,

��� � � G�ON � , where the

superscript “2”in
� G�ON � means this is the second tracker in the

paper, i.e.,
�-� 1

. The following steps are used to find the

new object state
� G�

:

1) Let � index the Meanshift iterations. Set � � � .

2) Compute the color histogram at

���

: R����� . Compute

the similarity between R ���� and the target using the

Bhattacharyya coefficient � � R6S
T R 5 R ���� 	 [20].

3) Compute the color histogram gradient and move the

searching window to the new location

� � using the

Meanshift analysis [20].

4) Compute the color histogram at

� � : R ���	 . Compute

the similarity between R ���	 and the target using the

Bhattacharyya coefficient � � R6S
T R 5 R ���	 	

5) If � � R S�T R 5 R
�� 	 	�� � � R S
T R 5 R��� � 	 , goto step 6.

Else, let

� � � �
��� 3
� � �
> 1 and goto step 4.

6) If

� � .
� �
���� , stop. Otherwise, let � � � 3 � and
� � �
� � and go to Step 2.

When the algorithm converges,

���

is the new estimate of

the object state

� G�

. We can then form the second proposal

function based on the color tracker:

2 G � � G� � � G�ON � 5 � G� ��� � �
� G� 5
Q G� �
(15)

where

Q G�

represents the uncertainty of the Meanshift color

tracker.

C. The SSL tracker

Vision-based tracker can only provide locations of people.

It is the audio-based tracker that identifies which particular

person is speaking. But the audio-based trackers have their

own limitations: it is quite difficult for them to estimate all the

3 elements in the object state. Fortunately, in our particular

application of meetings and lectures, the system cares the

most about
�
��

, the horizontal location of the speaker. This

simplifies our SSL tracker design – we only need to have two

microphones to estimate
�
��

. Let , � 	 � be the speaker’s source

signal, and
� � � 	 � and

� G � 	 � be the signals received by the two

microphones, we have:

� � � 	 ��� , � 	 .�� � 3 R � � 	 ��� , � 	 � 3�� � � 	 �
� G � 	 ��� , � 	 � 3 R G � 	 ��� , � 	 � 3�� G � 	 � (16)

where
�

is the time delay between the two microphones, R � � 	 �
and R G � 	 � represent reverberation, and

� � � 	 � and
� G � 	 � are the

additive noise. Assuming the signal and noise are uncorrelated,�
can be estimated by finding the maximum cross correlation

between
� � � 	 � and

� G � 	 � :
� �'� �
� D�� B
� A � A 	 � + �
� A � A 	 � + �?� �1 ; � N��

� � ��� � � � ��� � � �G ��� � � R! #" *$� (17)

where
� � ��� � and

� G ��� � are the Fourier transforms of
� � � 	 �

and
� G � 	 � ,
� A � A 	 � + � is the cross correlation of

� � � 	 � and
� G � 	 � ,

and � � 7 � is a frequency weighting function [4].

Once the time delay
�

is estimated from the above proce-

dure, the horizontal sound source direction
����

can be easily

estimated given the microphone array’s geometry. Let the two

microphones be at positions % and & , and the middle point

between them be position ' . Let the source be at location (,

as illustrated in Figure 3.

Fig. 3. Sound source localization

The goal of SSL is to estimate the angle) (*'+& . When the

distance of the source
� ',(� , is much larger than the length

of the baseline
� %-& � , the angle) (*'+& can be estimated as

follows [4]:

) (*'+& � �/. � �10 , �32 � %4& � (18)

where
 �65$7�198 > , is the speed of sound traveling in air.

Let the camera’s optical center also be at location O. We

can further convert) ('+& to object state
� � . Let

3 � be the

horizontal field of the view of the camera, and
���

be the

horizontal resolution of the camera in pixels, we have

���� �
� � � �� � ��� > 1
� �	� � 3 � > 1 � I � �	� �) (*'+& � (19)

The audio-based SSL tracker provides the third proposal

function 2 � � � �� � � ��ON � 5 � �� � � � �
� �� 5
Q �� �
, where

Q ��
is the

uncertainty of the SSL tracker and can be estimated from the

cross correlation curve [4].

V. VERIFIERS USED BY THE FUSER

In the previous section, we developed three individual track-

ers based on the three sensors. Because we want the trackers

to run in real time, simplified assumptions (e.g., Gaussianality

and color constancy) are made. But as described in Section

III, a sensor can have both a tracker and a verifier. As the

verifier only computes the likelihood of a given hypothesis,

more involved likelihood model can be used in the verifier,

thus ensuring robust tracking.

A. The contour verifier

The contour tracker described in Section IV-A only uses the

local smoothness constraint (via HMM transition probability)

when detecting contours. For the contour verifier, because

each hypothesis generated by the fuser is already an ellipse,

it implicitly enforces both the local smoothness constraint and

the prior knowledge of the elliptic shape information. We only

need to check how well it matches to the detected edge in

current image frame.

To calculate the contour likelihood of a given hypothesis� , �/.�
, an edge detector is applied on the normal lines of the

hypothesized contour. Let # % denote the edge detection results

on line
'

. By assuming the independence between different

normal lines, the contour likelihood is:

�
� � �� � � , �%.� ��� &Q
% � � �0� #&% � � , �/.� �

(20)

where the superscript “1” used in � �� means this is the first

verifier in the paper. The term �
� #&% � � , �/.� �
is previously defined

in Equation (10).

It is worth emphasizing again that in the contour tracker,

it only enforces a local contour smoothness constraint. It is

therefore possible that the estimated contour can be stuck on

a false target, e.g., a non-elliptic object. The contour verifier,

on the other hand, is much more strict and enforces the prior

knowledge of the elliptic shape information. The hypothesized

contour points on all normal lines therefore need to have strong

edges in order to get a high likelihood score. A non-elliptic

object cannot get high likelihood score because it will never

match well to any elliptic hypothesis.

B. The color verifier: a discriminant model

In the color-based tracker, to achieve fast and inexpensive

tracking, we made the assumption that an object’s color

histogram is stable and remains constant. In reality, however,

the color histogram of an object changes because of lighting,

shading and object motion. To handle this non-stationary

nature, in the verifier we allow the object color to change

but we require it to be sufficiently different from its nearby

background color. That is, we use a discriminant model in the

color verifier. For a given hypothesis
�-, �/.�

, let the object color

histogram be R
�F #"%$) and the neighboring background color

histogram be R T�! J"/$) . The similarity between the two histograms

can be calculated using the Bhattacharyya coefficients [20]:

� � R
�! #"%$) 5 R T� #"%$) ��� ����

�
�� � � �
O R
�! J"%$) � � � I R T�! #"%$) � � � (21)

where � is the index of the histogram bins. Because we use

the discriminant model, the degree of difference between R
�F #"%$)
and R T� J"%$) furnishes the likelihood of the object. The likelihood

for hypothesis
� , �/.�

is therefore:

� � � G� � � , �/.� ��� � . � � R
�F #"%$) 5 R T�! #"%$) �
(22)

C. The SSL verifier

In a realistic room environment, there are both ambient

noise (e.g., computer fans) and room reverberation. These

factors make the cross correlation curve

� A � A 	 � + � to have

multiple peaks. To achieve fast tracking speed, we made

a premature 0/1 decision in the SSL tracker (Section IV-

C). When estimating
� ��

(Equations (17) and (18)), we only

retained the time delay
�

but threw away the whole correlation

curve. For the SSL verifier, we can afford to use more accurate

likelihood model by keeping the whole correlation curve
� A � A 	 � + � . Given a hypothesis
� � � , �/.�

, its likelihood is defined

as the ratio between its own height and the highest peak in

the correlation curve

� A � A 	 � + � [16]:

�0� � �� � � ,
�/.
� ���
� A � A 	 � � ,

�/. ��>
� A � A 	 � � � (23)

� A � A 	 � � ,
�/. �:� � %4& � � 0 , � �/. � 	#� � � ��� > 1

� , �/.� I 	#� � � 3 � � �@� (24)

where Equation (23) is obtained by substituting Equation (17)

into Equation (18).

By assuming independence between contour, color and

audio, a combined object likelihood model is therefore:

�0� � � � � , �/.� ��� �
� � �� � � , �/.� � I �0� � G� � � , �/.� � I �0� � �� � � � � , �/.� �
which is used in Equation (8) to compute the particle weights.

VI. TRACKER EVALUATION AND ADAPTATION

In a non-stationary environment, object appearance can

change and the background clutter (both vision and audio)

can further complicate tracking. For example, when a person is

turning his/her head, the color can change and causes the color-

based tracker to fail. Online tracker evaluation and adaptation

are therefore necessary. We can give more weights to proposals

generated by the more reliable trackers. The unreliable trackers

can be updated or re-initialized.

In our proposed framework, the current particle set

(
� , �/.� 5@7 , �/.�

) represents the estimated posterior distribution of

the object state. We can estimate the reliability of each

individual trackers by comparing how similar/dissimilar their

proposal functions 2 � � � �� � � ���� �ON � 5 � �� �
are to the estimated

posterior:

� � � �
� J"%$)

� 7 , �%.� I 2 �3� � , �%.� � � ��� �ON � 5 � �� �
(25)

This performance evaluation formula is similar to the Bhat-

tacharyya coefficient calculation except it is based on weighted

particles. The intuition behind this formula is simple: if an

individual proposal function significantly overlaps with the

estimated posterior, it is a good proposal function and we

should trust the corresponding tracker more.

The fused tracking results can further be used to probabilis-

tically adapt the individual trackers.

� �� � � �

� �� 3 � � . � � � �

�F #"%$)
7 , �%.� I � , �/.�

(26)

where

� ��

(see Section IV) is tracker k’s own estimate of
� �

and
M 7 , �%.� I � , �%.�

is the fuser’s estimate of
�1�

. The reliability

factor
� � plays the role of an automatic regulator. If an

individual tracker is reliable, the current state for that tracker

depends more on its own estimate; otherwise, it depends more

on the fuser’s estimate.

VII. APPLICATION IN SPEAKER TRACKING

A real-time speaker tracking module based on our proposed

sensor fusion framework has been designed and implemented.

It has further been integrated into a distributed meeting system

[1]. Our goal is to track the speaker’s location so that the

system can provide good views for remote participants. A

fast multi-view face detector [21] detects new faces every

10 seconds to initialize the vision-based trackers. The tracked

heads are marked by rectangles with different colors in Figures

4 and 5. No code optimization is done with the current system

and it runs comfortably in real time on a standard Pentium 4

2.2GHz PC while tracking 5 to 6 people.

To test the robustness of the proposed algorithm, we use

video sequences captured from both an office and a meeting

room. The sequences simulate various tracking conditions,

including appearance changes, quick movement, shape defor-

mation, and noisy audio conditions. Sequence A, shown in

Figure 4, is a cluttered office environment with 700 frames

(15 frames/sec). This sequence has difficult situations for

both the contour tracker and the color tracker, and we only

use these two vision-based trackers to demonstrate the fusion

performance. On the first row in Figure 4, the person suddenly

moved his head at very fast speed. Because the contour tracker

(black bounding box) restricts the contour detection to normal

lines of predicted position, it loses track when the person

suddenly changes his movement. But because the person’s

head appearance does change dramatically, the color tracker

(blue bounding box) survives. On the second row, the waving

hand, which has similar color to the face, greatly distracts

the color tracker module. But the contour tracker succeeds by

enforcing the object dynamics. The fused tracker successfully

tracks the person through out the sequence by combining the

two individual trackers. To better illustrate the tracking results

on small images, we did not plot the bounding box for the

fused tracker. But it is similar to the better one of the two

individual trackers at any given time 	 .
Sequence B, shown in Figure 5, is a one-hour long real-life

group meeting. The meeting room has computer fan noise,

TV monitor noise, and has walls/whiteboards that strongly

reflect sound waves. The panorama video is constructed from

5 regular IEEE 1394 video cameras, such that it has a 360

degree view of the whole meeting room [1]. In this test

Fig. 4. Test of different proposal modules: On the first row, the contour
tracker (black bounding box) loses track when the person suddenly moves but
the color tracker (blue bounding box) survives. On the second row, the color
tracker module fails when the person’s arm waves in front of the face, but
the contour tracker succeeds.

sequence, we use all the three trackers: the contour tracker,

the color tracker and the SSL tracker. The bounding boxes

with different colors are the fused tracking results from the

contour tracker and color tracker. The red vertical bar is the

tracking results from SSL. The green vertical bar is the fused

results based on all the three trackers. The audio and vision

based trackers complement each other in this speaker tracking

task. Vision trackers have higher precision but are less robust

while the audio tracker knows the active speaker but is with

less precision. The fused tracker is robust to both vision and

audio background clutter.

VIII. CONCLUSION

In this paper, we proposed an integrated fusion framework

that combines both the bottom-up and top-down approaches to

probabilistically fuse multiple sensing modalities. At the lower

level, individual vision/audio trackers are designed to generate

effective proposals for the fuser. At the higher level, the

fuser performs reliable tracking by verifying hypotheses over

multiple cues. Different from the traditional fusion algorithms,

the proposed framework is a closed-loop system where the

fuser and trackers dynamically exchange tracking information.

To handle non-stationary situations, the fuser evaluates the

performance of the individual trackers and dynamically update

Fig. 5. Speaker tracking results.

their object states. We reported robust tracking results on real-

world data.

REFERENCES

[1] R. Cutler, Y. Rui, A. Gupta, J. Cadiz, I. Tashev, L. wei He, A. Colburn,

Z. Zhang, Z. Liu, and S. Silverberg, “Distributed meetings: A meeting

capture and broadcasting system,” in Proc. ACM Conf. on Multimedia,

2002, pp. 123–132.

[2] Y. Rui, L. He, A. Gupta, and Q. Liu, “Building an intelligent camera

management system,” in Proc. ACM Conf. on Multimedia, 2001, pp.

2–11.

[3] http://www.polycom.com/home/.

[4] Y. Rui and D. Florencio, “Time delay estimation in the presence of

correlated noise and reverberation,” Microsoft Research Redmond,”

Technical Report MSR-TR-2003-01, 2003.

[5] Y. Chen, Y. Rui, and T. S. Huang, “Parametric contour tracking using

unscented Kalman filter,” in Proc. IEEE Int’l Conf. on Image Processing,

2002, pp. III: 613–616.

[6] K. C. Chang, C. Y. Chong, and Y. Bar-Shalom, “Joint probabilistic data

association in distributed sensor networks,” IEEE Trans. Automat. Contr.,

vol. 31, no. 10, pp. 889–897, 1986.

[7] J. Sherrah and S. Gong, “Continuous global evidence-based Bayesian

modality fusion for simultaneous tracking of multiple objects,” in Proc.

IEEE Int’l Conf. on Computer Vision, 2001, pp. 42–49.

[8] B. Anderson and J. Moore, Optimal Filtering. Englewood Cliffs, NJ:

Prentice-Hall, 1979.

[9] J. Vermaak, A. Blake, M. Gangnet, and P. Perez, “Sequential Monte

Carlo fusion of sound and vision for speaker tracking,” in Proc. IEEE

Int’l Conf. on Computer Vision, 2001, pp. 741–746.

[10] G. Loy, L. Fletcher, N. Apostoloff, and A. Zelinsky, “An adaptive fusion

architecture for target tracking,” in Proc. Int’l Conf. Automatic Face and

Gesture Recognition, 2002, pp. 261–266.

[11] R. Merwe, A. Doucet, N. Freitas, and E. Wan, “The unscented par-

ticle filter,” Cambridge University Engineering Department,” Technical

Report CUED/F-INFENG/TR 380, 2000.

[12] M. Isard and A. Blake, “ICONDENSATION: Unifying low-level and

high-level tracking in a stochastic framework,” in Proc. European Conf.

on Computer Vision, 1998, pp. 767–781.

[13] ——, “Contour tracking by stochastic propagation of conditional den-

sity,” in Proc. European Conf. on Computer Vision, 1996, pp. I:343–356.

[14] A. Doucet, “On sequencial simulation-based methods for Bayesian

filtering,” Cambridge University Engineering Department,” Technical

Report CUED/F-INFENG/TR 310, 1998.

[15] J. S. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic

systems,” Journal of the American Statistical Association, vol. 93, no.

443, pp. 1032–1044, 1998.

[16] Y. Rui and Y. Chen, “Better proposal distributions: Object tracking using

unscented particle filter,” in Proc. IEEE Int’l Conf. on Comput. Vis. and

Patt. Recog., 2001, pp. II:786–794.

[17] F. Hausdorff, Set Theory. 3rd ed., New York: Chelsea Publishing

Company, 1978.

[18] L. R. Rabiner and B. H. Juang, “An introduction to hidden Markov

models,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 3, no. 1,

pp. 4–15, January 1986.

[19] J. Vermaak and A. Blake, “Nonlinear filtering for speaker tracking in

noisy and reverberant environments,” in Proc. IEEE Int’l Conf. Acoustic

Speech Signal Processing, 2001, pp. V:3021–3024.

[20] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid

objects using mean shift,” in Proc. IEEE Int’l Conf. on Comput. Vis. and

Patt. Recog., 2000, pp. II 142–149.

[21] Z. Zhang, L. Zhu, S. Li, and H. Zhang, “Real-time multi-view face

detection,” in Proc. Int’l Conf. Automatic Face and Gesture Recognition,

2002, pp. 149–154.

PLACE

PHOTO

HERE

Yunqiang Chen is a Researcher in the Intelligence

Vision and Reasoning Group in Siemens Corporate

Research. He received his B.S. degree in Electrical

Engineering from Tsinghua University (China) in

1995 and his M.S. degree from National Lab of

Pattern Recognition (China) in 1998. He received his

Ph.D. degree from University of Illinois at Urbana-

Champaign in 2002. His research interests include image/video/audio process-

ing, medical imaging, sensor fusion, computer vision and machine learning.

PLACE

PHOTO

HERE

Yong Rui is a Researcher in the Communication,

Collaboration and Signal Processing (CCSP) group

in Microsoft Research. He received his PhD from

University of Illinois at Urbana-Champaign (UIUC)

in 1999. Dr. Rui’s research interests include multi-

media systems, real-time collaboration, distributed

meetings, image/video/audio processing, computer

vision and machine learning. He published one book (Exploration of Visual

Data, Kluwer Academic Publishers, 2003), six book chapters, seven journal

papers, and over forty referred conference papers in the above areas. Dr.

Rui was co-chair of the International Workshop on Multimedia Technologies

in E-Learning and Collaboration (WOMTEC), 2003. He was also on the

program committees of ACM Multimedia, IEEE Computer Vision and Pattern

Recognition (CVPR), IEEE Int’l Conf. on Multimedia Expo (ICME), IEEE

Int’l Conf. on Image Processing (ICIP), SPIE ITCOM, and many others. Dr.

Rui was on the National Science Foundation’s review panel and National

Academy of Engineering’s Symposium of Frontiers of Engineering for out-

standing researchers.

