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Abstract

Effective image parsing needs a representation that
is both selective (to inter-class variations) and invariant
(to intra-class variations). CodeBook from bag-of-visual-
words representation addresses the invariance, and part-
based models can potentially address the selectivity. How-
ever, existing part-based approaches either require expen-
sive manual object-level labeling or make strong assump-
tions not applicable to real-world images. In this paper,
we propose a PartBook approach that simultaneously over-
comes the above two difficulties. Furthermore, we present
an effective framework that integrates CodeBook and Part-
Book, which achieves both intra-class invariance and inter-
class selectivity. Specifically, a set of candidate regions are
first selected from heat map-like representations obtained
by a SVM classifier trained for each category. Then the re-
gions are clustered based on the dense matching-based sim-
ilarity, and a part detector is learned from each cluster and
further refined by utilizing a latent SVM. The learned Part-
Book summarizes the most representative mid-level patterns
of each category, and can be readily used for image pars-
ing tasks to identify not only objects but also different parts
of an object. Extensive experimental results on real-world
images show that the automatically learned parts are se-
mantically meaningful, and demonstrate the effectiveness of
ParkBook in image parsing tasks at different levels.

1. Introduction
Image representation plays a key role in all level of im-

age parsing tasks. A good image representation should
be both selective (large inter-class distance) and invariant
(small intra-class distance). The CodeBook from bag-of-
visual-words representation has been proven to be robust to
intra-class variations [5], because it only uses small local
features. On the other hand, as the object/part-based repre-
sentations use bigger patches, capable of modeling spatial
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structures and carrying more semantic information, they are
effective in handling inter-class selectivity in object detec-
tion tasks [8, 11, 22]. Intra-class invariance is well studied
and has largely achieved good results [15, 20, 23]. In this
paper, we will focus on providing an effective solution to
the more challenging task of inter-class selectivity.

A part-based model typically consists of a set of part de-
tectors learned from a set of aligned images, based on which
the appearance likelihood and spatial consistency can be
modeled and verified. Although there are several promis-
ing automatic methods for image-level annotation [18, 19],
automatically aligning real-world images of a generic cate-
gory is still an open problem. The challenges mainly come
from two difficulties:
1. It is hard to select candidate regions for alignment as ex-
isting interest point detectors are only robust to affine trans-
formations but not intra-class variations.
2. It is difficult to match regions due to the existence of large
intra-class variations and other distracted regions from clut-
tered background.

The existing part-based approaches mainly fall into two
categories.
1. Manual labeling at object level. Zhu et al. [24] pro-
posed to specify a set of points on the target object bound-
ary in training images with respect to a set of predefined
parts (e.g., horse head, horse leg, etc.). Then, a hierarchi-
cal deformable template can be developed for robust object
detection. Bourdev et al. [2] use detailed 3D human body
annotations to learn body parts that are tightly clustered in
both appearance and configuration space. Felzenszwalb et
al. [8] instead obtained a set of initial part detectors by de-
composing a global template learned from images with la-
beled object bounding boxes, and updated them by an it-
erative process of image alignment and detector learning.
These approaches can potentially lead to part-based model-
s, but the manual labeling is too costly to be scalable.
2. Image level label but with restrictive image appearance.
To combat the above difficulties, the labeling information
can be at image level. Ullman et al. [17] proposed to ran-
domly select a set of candidate regions from some sample
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Figure 1. Schematic illustration of PartBook construction for bicycle. First, (a) we represent images by an improved version of bag-of-
visual-words model and use SVM to learn a classifier. Then, (b) we utilize the learned SVM to relabel the positive images and generate a
heap map for each positive image. After that, (c) we extract a set of heat regions from the heat maps and (d) group them based on a dense
matching-based similarity. Finally, we learn a set of part detectors initialized by the region clusters.

images of the target object class, and use these candidates to
search in every training image to choose the most informa-
tive ones as part candidates. Fergus et al. [9] instead used
interest point detector to select a set of candidate regions
from each training image and iteratively update the constel-
lation model by testing their correspondence hypothesize.
While these algorithms can automatically learn the parts,
the high computational demands of their algorithms limits
them to use very low image resolutions (e.g., 14x21 pixels)
or fewer interesting points (20-30 local features per image).
Instead of selecting parts from a large pool of candidates,
multi-layer representations [13, 21] learn mid-level parts by
summarizing all the image regions with the same size using
low level patch features. However, these approaches work
well only when foreground objects have few variations and
the background is relatively simple.

In summary, to the best of our knowledge, no existing ap-
proaches that simultaneous satisfy the below requirements:
1. Only requires image-level label.
2. Handles real-world images with high resolution, diverse
object variation and cluttered background.

In this paper, we present a novel approach that simulta-
neously meets the above requirement. This is done by intro-
ducing a key concept called PartBook–it is a set of represen-
tative parts in each category. With the PartBook, images of
the same category can be implicitly aligned by applying the
learned part detectors, and reliable part-based models can
be built for object detection, image classification and other
image parsing tasks. When combined with CodeBook, the
proposed PartBook approach effectively handles both intra-
class invariance and inter-class selectivity.

The inter-class selectivity of PartBook is obtained via
gradually discriminative learning and common pattern ab-
stracting, the process is illustrated in Fig. 1,
1. In the initial stage, we only know image-level labels and
atomic patches in an image. For each category, we represent
images by an improved version of bag-of-visual-words rep-
resentation and use support vector machine (SVM) to learn
a classifier [23]. The patch-level can produce a good cue for
large structure selection [4, 16].
2. We next utilize the learned SVM coefficients to identi-
fy the most relevant regions to the category and use these
regions as a good training set to learn initial part detectors.
Because no part is predefined, we assume that similar re-
gions belong to the same part and develop an unsupervised
learning algorithm to group these regions. In this step, the
region similarity is defined by employing a dense matching-
based approach to take into account both the appearance
similarity and the spatial consistency.
3. Finally, a set of part detectors is trained with the posi-
tive regions in each cluster, and further refined by utilizing
a latent SVM.

The proposed PartBook approach leads to semantically
meaningful representation. We conducted experiments on
PASCAL VOC 2007 and 2010. The experimental result-
s show that many of the learned mid-level parts look se-
mantically meaningful and can provide deep image parsing
beyond just image-level labels. For example, some wheel-
related parts learned from bicycle are shown in Figure 1. We
also tested a part detector of human head on the PASCAL
VOC 2010 ‘person layout taster challenge’, and achieved
comparable results with the detectors learned from images
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Figure 2. The HOG feature pyramid and a local feature of 4x4
cells.

with detailed labels.
The rest of this paper is organized as follows. We in-

troduce image representation and PartBook construction in
section 2 and present PartBook-based image parsing in sec-
tion 3. Extensive experimental results are provided in sec-
tion 4. Finally, we conclude this work in section 5.

2. Automatic PartBook Learning
Our models are built based on the Histogram of Oriented

Gradient (HOG) features from [6]. Image representation is
obtained by aligning an image to a CodeBook and a Part-
Book. A CodeBook consists of a set of visual words and
captures small structures in an image. Large structures are
captured by part detectors in the PartBook.

2.1. HOG Feature

We follow the construction in [6] with updates as sug-
gested in [8] to define a dense representation of an image at
a particular resolution. An image is first divided into non-
overlapping regions of 8×8 pixels, namely cells. We repre-
sent each cell with a 31 dimensional HOG feature vector as
described in [8]. To deal with objects with different scales,
we define a HOG feature pyramid by computing HOG fea-
tures at each level of a standard image pyramid (see Fig-
ure 2). Let H be a HOG pyramid and l = (x, y, s) be a
cell at (x, y) in the s-level of the pyramid. Let ϕ(H, l, w, h)
denote a w × h × 31 dimensional feature vector obtained
by concatenating the HOG features in the window of w× h
cells with its top-left corner at l. Below we use ϕ(H, l) to
simplify the notation ϕ(H, l, w, h) when the window size is
clear from the context.

2.2. Data Set

Let D = {(H1, y1), . . . , (Hn, yn)} be a set of examples
with image-level labels, where yi ∈ {−1, 1} and Hi spec-

ifies the feature pyramid for image i. Let D+,D− be the
positive and negative examples respectively. In following
subsections we will introduce the procedure of learning the
PartBook from images with only image-level labels.

2.3. First Layer

In the initial stage, the system has no knowledge to guide
the selection of large structures. Then we start from repre-
senting each image with its atomic patches. Here, we em-
ploy an improved version of standard bag-of-visual-words
model to aggregate the patch-level features to form the
image-level features [23], which considers the appearance
of each visual word in an image to avoid the quantization
error. First, a set of patch-level features is densely sampled
from each location of the HOG pyramid, the window size
of each patch is set to be 4 × 4 cells (see Figure 2), and
the patch-level feature at l ∈ L is ϕ(H, l) ∈ Rd1 , where
d1 = 4 × 4 × 31. As small variations of the local patch
features, we use the k-means algorithm to partition the s-
pace Rd1 into A disjoint regions using 1 million randomly
sampled local features, and denote the cluster centers by a
generic CodeBook C = {Ca; a = 1, . . . , A}, Ca ∈ Rd1 .
Then each local feature ϕ(H, l) is assigned with the visual
word by,

vl = arg min
a∈{1,...,A}

∥ ϕ(H, l)− Ca ∥2 . (1)

We denote the locations at which the visual words are Ca

by:
La = {l : vl = a}. (2)

The appearance of Ca in H is coded as

ϕ(H;Ca) =
1√
|La|

∑
l∈La

ϕ(H, l). (3)

As suggested by [15, 23], L1-sqrt normalization is used
for better performance. The image-level feature aggregat-
ed from the patch-level features is then represented as

ΦC(H) = [ϕ(H;C1), . . . , ϕ(H;CA)] . (4)

We assume that each example H is scored by a linear clas-
sifier of the form,

fβC (H) =
A∑

a=1

βa · ϕ(H;Ca) = βC · ΦC(H), (5)

where βC is a vector of model parameters. The model pa-
rameters βC are learned by passing the new constructed
dataset

{(
ΦC(H1), y1

)
, . . . ,

(
ΦC(Hn), yn

)}
into a classical

SVM formulation,

1

2
∥ β ∥2 +C

n∑
i=1

ξ(yi, β · xi), (6)
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Figure 3. Examples of heat maps from the 20 categories in Pascal VOC 2010. For clarity, only the heat map of the HOG feature map at
the level of the original image scale is shown. In each image, the top five high score regions are marked with red bounding boxes. (Better
viewed in color.)

where ξ(yi, β · xi) = max(0, 1− yiβ · xi) is the hinge loss
function, and C > 0 is the regularization constant.

The learned classifier provides the mapping between the
aggregated patch-level features and the category. As the
classifier is a linear operator on the image-level features,
which are linearly aggregated from the patch-level features,
the classification score of each image can be decomposed
into the sum of patch-level scores, we follow the deduction
in [23] to obtain the score of each patch as follows,

fβC (H) =
A∑

a=1

βa · ϕ(H;Ca) =
A∑

a=1

1√
|La|

∑
l∈La

βa · ϕ(H, l)

=
∑
l∈L

A∑
a=1

1√
|La|

δ[vl = a]βa · ϕ(H, l)

=
∑
l∈L

s(l)

s(l) =

A∑
a=1

1√
|La|

δ[vl = a]βa · ϕ(H, l)

(7)
where s(l) is the score of the patch at l, δ[vl = a] is an
indicator function that takes on value 1 if vl = a and 0
otherwise. The score of a cell at l denoted by c(l) is aver-
aged from all the patches that contain it. With the score of
each cell, we can create the heat map for each HOG feature
map. In Fig. 3, we visualize some heat maps from the 20
categories in PASCAL VOC 2010. From the heat maps, we
observe that many common patterns in positive images are

reinforced whereas unrelated background patterns are sup-
pressed. This property provides a good guidance to select
large structures.

The score of a region Ω is naturally defined as s(Ω) =∑
l∈Ω c(l). And high score regions are more positive ac-

cording to the category classifier. Here, we use a threshold
to detect the high score regions,

O(l) =

{
1, if c(l) > α
0, otherwise

, (8)

Empirically, we set α to be the average score of all the cells
in an image. Then, the 4-connected foreground regions in
O(l) are extracted. We denote the regions extracted from
image i as {(ϕ(Hi, lr), sir); r = 1, . . . , Ri}, where lr is
location of the top-left corner of the bounding box of the
rth region, ϕ(Hi, lr) ∈ Rdir , dir = wir × hir × 31, sir is
the score of the rth region and Ri is the number of regions
extracted from image i. We rank the regions extracted from
all the positive images according to their region scores and
keep the top 1000 regions as candidates, and denote them by
{ϕk; k = 1, . . . , 1000}, ϕk is the HOG feature map of the
kth region. Note that ϕk might have different dimensions as
the region size (wir and hir) may be not the same.

2.4. Second Layer

The candidate regions selected from the first layer serve
as good training data to construct part detectors. In this sub-
section, we will detail the process of learning part detectors.
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2.4.1 Region Similarity

To summarize the common patterns from the candidate re-
gions, we need to define a similarity measure to group sim-
ilar regions. However, these regions are much larger than
local patches and their features represented as ϕk do not
have the same dimension. We observe that these category-
related regions are with fewer variations and less-cluttered
background. This allows us to adopt the similarity measure
defined by explicitly feature matching. Many algorithm-
s have proved the effectiveness of similarity measure de-
fined by explicitly feature matching between two images
with few variations [1, 3, 7, 14]. In this work, we adopt
PatchMatch [1] to establish dense feature matching between
two regions for its efficiency. The algorithm is driven by the
key insight that some good feature matches can be found via
random matching, and the natural coherence in the imagery
allows it to propagate such matches quickly to surrounding
areas [1]. After running PatchMatch between two region-
s ϕi and ϕj , for the cell at p = (x, y) in region ϕi, we
have the location of its matched cell in region ϕj by p+ dp,
where dp = (dxp, dyp). The similarity measure based on
the PatchMatch result is defined as:

sim(ϕi, ϕj) =
∑
p∈Ωi

∥ ϕi(p)−ϕj(p+dp) ∥2 +λ
∑

(p,q)∈E

∥ dp−dq ∥2,

(9)
which contains an appearance similarity term and a spatial
consistency term. We add the spatial consistency term based
on the fact that the regions from the same part tend to be
more spatially consistent than the ones from different parts.
The appearance vector is normalized to L2 unit length, and
the spatial vector is normalized to [0, 1] according to the
image size. The tradeoff is chosen to be λ = 1.

2.4.2 PartBook Construction

After the similarity matrix is computed, we use Affinity
Propagation to group similar regions because it only re-
quires the similarity matrix (need not to be symmetric) and
the preferences as input and can identify a subset of repre-
sentative examples [10]. The method exchanges messages
between data points until a good set of exemplars and cor-
responding clusters gradually emerges. We assume that al-
l regions are equally considered to be exemplars. Hence
the preferences are set to a common value–the median of
sim(ϕi, ϕj). After the regions are clustered, the set of repre-
sentative regions is named as PartBook and denoted by P =
{Pb; b = 1, . . . , B}, where Pb ∈ Rdb , db = wb × hb × 31.

2.4.3 PartBook Refinement

Each part (or region cluster) in the PartBook can be used to
implicitly align the unseen images by part detection. It is

desired that the learned part detectors are of good general-
ization ability. However, each part in the PartBook is just
a specific region instance identified from positive images
and cannot generalize well. We enhance the generalization
ability of each part by training a latent SVM by detecting
more positive instances (many are missed in the bottom-up
process of Layer 1) and separating enormous negative in-
stances [8]. We assume each image H is scored by part b as
follows,

fβb
(H) = max

l∈L
βb · ϕ(H, l), (10)

where βb ∈ Rdb is a vector of model parameters, and L
is all possible locations of HOG cells to place the part. In
analogy to the classical SVM in Eq. 6, we would like to train
βb from the image-level labeled dataset D by optimizing the
following objective function,

min
βb

1

2
∥ βb ∥2 +C

n∑
i=1

ξi

s.t. maxl∈Li βb · ϕ(Hi, l) ≤ −1 + ξi, ∀i ∈ D−

maxl∈Li βb · ϕ(Hi, l) ≥ +1− ξi, ∀i ∈ D+

ξi ≥ 0

(11)

The constraint for each negative image can be equiva-
lently replaced by |Li| linear constraints, i.e., ∀l ∈ Li, βb ·
ϕ(Hi, l) ≤ −1 + ξi. This involves too large a number of
linear inequality constraints to be optimized over explicit-
ly. This is a common problem and has been well solved in
structural SVM learning. Here we use the well-tuned solver
cutting plane method to solve the problem [12].

The constraint for each positive image requires ∃l ∈
Li, βb · ϕ(Hi, l) ≥ 1 − ξi. These constraints imply a set
of sub optimization problems, each one is formed by spec-
ifying a location for each positive image and denoted by
L+ = {li; li ∈ Li}, i = 1, . . . , n+, where li is the location
specified for positive image i, n+ = |D+|. Each sub opti-
mization is a classical SVM. However, as the total number
of sub optimization problem is

∏n+

i=1 |Li|, it is impractical
to solve all the sub optimization problem to optimize Eq. 11.
Actually, most the sub optimization problems are meaning-
less because their part locations are not correctly specified.
In practice, latent SVM only solves a few sub optimization
problems by an iterative process:
Step 1: Holding βb fixed, select the sub optimization prob-
lem, li = argmaxl∈Li

βb · ϕ(Hi, l), ∀i ∈ D+.
Step 2: Holding li fixed for each positive image, optimize
βb by solving the sub optimization problem.

Both steps always improve or maintain the value of the
objective function in Eq. 11. The most crucial part of train-
ing latent SVM is the initialization of βb, which guides sub
optimization problem selection in Step 1. According to the
infinite monkey theorem 1, for a randomly initialized βb, in-
finite amount of time will be needed to almost surely choose

1http://en.wikipedia.org/wiki/Infinite monkey theorem

21



the right position for the part in each positive image. For-
tunately, the regions in cluster b serve as good training data
to initialize βb. First, we warp each region in cluster b to
its representative region Pb according to the dense feature
matching result to form the initial positive examples. This
is to ensure all the positive examples are well aligned and
have the same dimensionality. Then, a set of regions with
the same size with Pb are sampled from negative images
as negative examples. After that, we train an initial model
βb for part b by passing the training data into the classical
SVM in Eq. 6. With the well initialized part detector, we s-
tart up the latent SVM to further refine it. On a single CPU,
the entire training process takes 3 to 4 hours per object cat-
egory in the PASCAL datasets, including the initialization
of the parts. Figure 4 shows the most discriminative part-
s (i.e., with the smallest classification error) learned from
the 20 categories in PASCAL VOC 2010. From the figure,
one can see that many semantically meaningful parts are au-
tomatically learned from training images with only image-
level labels, for example, wheels learned from bicycle, bus,
car and motorbike, noses learned from cow and dog, heads
learned from cat and person etc.

3. PartBook-based Image Parsing
The learned PartBook summarizes the most representa-

tive mid-level patterns of a category, and can be directly
used for image parsing tasks to identify not only objects but
also the parts of an object. Also, the PartBook can be used
to enhance the selectivity of the image representation. In
section 2, a two layer image representation is constructed
to achieve both invariance and selectivity. The first layer
captures small structures by a CodeBook and has a good
intra-class invariance property. The second layer is based
on a PartBook, which captures mid-level structures and has
a good inter-class selectivity property. The final classifier
for an image is essentially a linear model,

fβ(H) = β · Φ(H), (12)

where
β = [βC , βP ]

Φ(H) = [ΦC(H),ΦP(H)],
(13)

ΦC(H) is the feature vector from the first layer defined in
Eq. 4, and ΦP(H) is the feature vector from the second
layer according to the PartBook P ,

ΦP(H) = [ϕ(H;P1), . . . , ϕ(H;PB)], (14)

where ϕ(H;Pb) is the appearance of part b in H and is de-
fined as,

ϕ(H;Pb) = ϕ(H, lb)
lb = argmax

l∈L
βb · ϕ(H, l). (15)

Fig. 5 illustrates the part detection results on two images. It
can be seen that the part detectors generate strong responses
at their corresponding positions in the images.
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Figure 4. The most discriminative part detector learned from the
20 categories of PASCAL VOC 2010. Each row shows the part
detector in the most left column, followed by its top 10 detections.

Figure 5. The first row shows the learned part detectors for bicy-
cle and their most positive instances. The last two rows show the
responses of part detector over the entire image. (Better viewed in
color.)

4. Experimental Results

We evaluate the newly proposed PartBook in the con-
text of detection and classification on two publicly avail-
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Figure 6. The most left image is the head detector and head region is marked with a red bounding box. The detections are ranked by the
detection scores, displayed in scan-line order (left to right, top to bottom).

Table 1. Performance of head detection on PASCAL VOC 2010
‘person layout challenge’ testset.

Method OpenCV Head DPM Head PartBook Head

AP(%) 22.5 42.3 40.0

able PASCAL VOC challenges datasets, i.e. 2007 2 and
2010 3. The images in both datasets contain objects from
20 object categories in realistic scenes. The datasets are ex-
tremely challenging due to the wide varieties of appearances
and poses of objects, and cluttered background. PASCAL
VOC 2007 consists of 9,963 images which are divided into
three subsets: training data (2501 images), validation data
(2510 images), and testing data (4952 images). PASCAL
VOC 2010 consists of 21,738 images and correspondingly
are divided into three subsets: training data (4998 images),
validation data (5823 images), and testing data (9637 im-
ages). The performance is evaluated using the Average Pre-
cision (AP) measure, the standard metric used by PASCAL
VOC challenges, which computes the area under the Preci-
sion/Recall curve.

4.1. Detection

In this section we evaluate the PartBook in the context of
detection.
Part Detection As no ground truth of the learned parts is
available in the datasets, we indirectly evaluate the part de-
tectors using the ground truth of object bounding boxes. To
be considered as a correct part detection, the predicted part
bounding box Bp must be no larger than the ground truth
object bounding box Bgt and area(Bp∩Bgt)

area(Bp∪Bgt)
> 0.5. Since

the ground truth object bounding boxes of VOC 2010 are
still confidential, we only evaluated the part detectors on
PASCAL VOC 2007 testing set.

We report performance of the top 3 part detectors of each
category in Table 2. We also list the performance of Dalal-
Triggs model for reference [6]. From the table, one can see
that a single part detector for each category achieves com-
parable performance with the Dalal-Triggs model. The part
detectors perform well on rigid objects such as bicycle and
car as well as highly deformable objects such as cat and
dog.

2http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
3http://www.pascal-network.org/challenges/VOC/voc2010/workshop/index.html

Head Detection From the learned parts for person, we ob-
served that some of them are about head. By coincidence,
there are ground truth data for human head in PASCAL
VOC 2010 ‘person layout challenge’. The test set of the
challenge contains 320 images and 505 humans annotated.
Bounding boxes are provided around every human figure
and the task is to predict the location of head. The predic-
tion of a head is considered to be correct if the overlap ratio
with the ground truth is larger than 0.5. We use one learned
part about head and mark out the exact head area as head
detector.

Figure 6 illustrates the high score detections from the
test set. From the figure, we can see that the learned head
detector is relatively robust to the changes of pose and ex-
pression.

In Table 1, we compare our head detector (Part-
Book Head) with the general frontal face detector
(OpenCV Head) provided by OpenCV and the head detec-
tor (DPM Head) learned from images with human bound-
ing boxes [8]. The PartBook Head performs better than
OpenCV Head and is comparable with DPM Head on the
test set. Note that our head detector directly learned from
image-level labeled data. This makes our approach more
capable of being applied to other parts such as car wheel
and cow nose.

4.2. Classification

To evaluate the usefulness of PartBook in the context of
image classification tasks, we compare the following three
methods:
Layer 1: an improved version of bag-of-visual-words repre-
sentation as described in section 2.3, which is the state-of-
the-art single feature method [23]. The codebook size A is
1024.
+DPM: the responses of 20 part-based detectors provided
by [8] are added into the Layer 1 representation.
+PartBook: the responses of part detectors in the PartBook
are added into the Layer 1 representation.

The results are summarized in Table 3. From the results,
one can see that both part-based object detectors and Part-
Book improve the CodeBook-based image representation,
which demonstrates the effectiveness of mid-level parts in
image classification tasks. PartBook achieves a compara-
ble improvement (only 0.6% lower in mAP on VOC 2007
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Table 2. Performance of part detection on the PASCAL VOC 2007 test set.
plane bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Dalal-Triggs 17.9 36.5 1.8 0.8 15.3 29.1 28.0 1.4 12.2 16.6 16.0 9.8 21.7 24.1 17.2 11.3 13.9 11.8 17.1 29.9 16.6

Part1 10.3 28.9 6.8 9.2 3.0 19.4 26.1 20.4 1.2 9.5 14.0 16.2 13.6 21.6 18.9 9.5 9.6 11.4 13.5 15.0 13.9

Part2 10.2 27.3 3.9 3.4 1.3 19.3 26.0 18.0 1.0 9.3 13.0 12.9 11.7 20.3 18.4 9.3 9.6 7.1 8.8 13.7 12.2

Part3 10.1 26.8 3.7 3.1 0.3 11.3 25.1 16.4 0.6 5.1 12.0 10.7 11.6 19.8 18.4 6.3 5.3 5.3 6.1 9.5 10.4

Table 3. Performance of image classification on the PASCAL VOC 2007 and VOC 2010 test set.
Classification on VOC 2007

plane bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Layer 1 75.5 66.4 48.0 69.1 33.3 68.1 78.6 57.7 53.0 47.4 57.0 48.5 77.0 65.5 83.7 29.3 46.5 57.0 80.3 57.0 59.9

+DPM 76.2 76.1 45.9 69.9 49.9 70.2 84.2 64.4 56.6 47.5 58.4 47.3 77.9 69.3 88.4 46.2 51.0 61.2 76.4 66.9 64.2

+PartBook 73.1 75.4 45.6 69.6 47.2 70.0 81.5 64.2 56.7 48.3 60.2 47.9 79.2 69.2 87.0 44.7 51.1 59.8 76.2 64.3 63.6

Classification on VOC 2010

Layer 1 88.8 64.1 59.2 70.9 34.1 78.4 69.4 66.6 54.7 49.9 51.1 60.2 65.0 69.4 83.3 25.4 56.0 54.2 82.0 60.7 62.2

+DPM 86.8 73.4 57.8 69.6 47.2 79.7 73.9 69.3 57.7 50.2 52.0 60.5 65.6 74.2 88.2 38.2 58.1 49.1 79.0 68.3 64.9

+PartBook 84.9 71.0 55.8 70.3 46.5 79.0 71.8 69.2 57.2 51.6 51.1 60.6 64.9 73.0 86.4 37.6 58.1 50.9 79.5 64.6 64.2

and 0.7% lower on VOC 2010), but significantly reduces
the manual labeling effort as PartBook directly works on
image-level labeled data.

5. Conclusion

In this paper, we have presented a novel framework that
automatically learns a set of mid-level parts for each cate-
gory from images with only image-level labels. The algo-
rithms in this framework gradually learn and abstract parts
in a bottom-up manner, and further refine them in a top-
down manner. Many of the learned mid-level parts look
semantically meaningful, and can be readily used in image
parsing tasks such as human head detection and wheel de-
tection. Also, they can be used to enhance the selectivity
of image representations. Experimental results on challeng-
ing benchmark data suggest the effectiveness of the learned
parts in image parsing tasks at different levels.
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