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Abstract—In recent years, a variety of relevance feedback (RF) 

schemes have been developed to improve the performance of 
content-based image retrieval (CBIR). Given user feedback 
information, the key to a RF scheme is how to select a subset of 
image features to construct a suitable dissimilarity measure. 
Among various RF schemes, biased discriminant analysis (BDA) 
based RF is one of the most promising. It is based on the 
observation that all positive samples are alike, while in general 
each negative sample is negative in its own way. However, to use 
BDA, the small sample size (SSS) problem is a big challenge, as 
users tend to give a small number of feedback samples. To explore 
solutions to this issue, this paper proposes a direct kernel BDA 
(DKBDA), which is less sensitive to SSS. An incremental DKBDA 
(IDKBDA) is also developed to speed up the analysis. 
Experimental results are reported on a real-world image collection 
to demonstrate that the proposed methods outperform the 
traditional kernel BDA (KBDA) and the support vector machine 
(SVM) based RF algorithms. 
 

Index Terms—Relevance feedback (RF), content-based image 
retrieval (CBIR), biased discriminant analysis (BDA), kernel 
biased discriminant analysis (KBDA), direct kernel biased 
discriminant analysis (DKBDA), incremental direct kernel biased 
discriminant analysis (IDKBDA). 
 

I. INTRODUCTION 

ITH the explosive growth in image records and the rapid 
increase of computer power, retrieving images from a 

large-scale image database becomes one of the most active 
research fields [1], [2]. To give all images text annotations 
manually is tedious and impractible and to automatically 

 
Manuscript received October 31, 2004. The first two authors’ research 

related to this paper was fully supported by grants from the Research Grants 
Council of the Hong Kong SAR. 

Dacheng Tao is with the School of Computer Science and Information 
Systems, Birkbeck College, University of London, Malet Street, London 
WC1E 7HX, United Kingdom. (e-mail: dacheng@dcs.bbk.ac.uk).  

Xiaoou Tang is with the Department of Information Engineering, The 
Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. 
(e-mail: xtang@ie.cuhk.edu.hk). 

Xuelong Li is with the School of Computer Science and Information 
Systems, Birkbeck College, University of London, Malet Street, London 
WC1E 7HX, United Kingdom. (e-mail: xuelong@dcs.bbk.ac.uk). 

Yong Rui is with the Microsoft Research, One Microsoft Way, Redmond, 
WA 98052, USA. (e-mail: yongrui@microsoft.com). 

annotate an image is beyond current techniques. 
Content-based image retrieval (CBIR) is a technique to 

retrieve images semantically relevant to the user’s query from 
an image database. It is based on automatically extracted visual 
features from an image, such as color [3], [4], [10]-[12], texture 
[5]-[10], [12], and shape [11]-[13].  However, the gap between 
these low-level visual features and high-level semantic 
meanings usually leads to poor performance.  

Relevance feedback (RF) is a way to bridge this gap and to 
scale the performance in CBIR systems [14]-[17]. RF focuses 
on the interactions between the user and the search engine by 
letting the user labeling semantically positive or negative 
samples. RF is different from the traditional classification 
problem because the user is not likely to label a large number of 
retrieved images. 

As a result, small sample learning methods, where the number 
of the training samples is much smaller than the dimension of 
the descriptive features, are important in CBIR RF. 
Discriminant analysis [18]-[26]and the support vector machine 
(SVM) method [27]-[31] are two small sample learning 
methods used in recent years to obtain state-of-the-art 
performances.  

Discriminant analysis [18] is one of the most popular 
solutions for the small sample learning problem. In the last 
twenty years, Fisher linear discriminant analysis (LDA) has 
been successfully used in face recognition [19]-[23], [26]. LDA 
was first used in CBIR for feature selection and extracts the 
most discriminant subset feature for image retrieval. The 
remaining images in the database were then projected onto the 
subspace and finally, some similarity or dissimilarity measures 
were used to sort these images. However, with LDA all negative 
feedbacks are deemed equivalent, and this is a severe limitation 
of the method because all positive examples are alike and each 
negative example is negative in its own way. With this 
observation, biased discriminant analysis (BDA) [24], [25] was 
developed by Zhou and Huang to scale the performance of 
CBIR and obtained a more satisfactory result. In the BDA 
model, the negative feedbacks are required to stay away from 
the center of the positive feedbacks. Motivated by the kernel 
trick successfully used in pattern recognition [32], Zhou et al. 
also generalized the BDA to the kernel feature space as the 
kernel biased discriminant analysis (KBDA). KBDA performs 
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much better than BDA [24], [25]. Just like LDA, BDA and 
KBDA also lead to the small sample size (SSS) problem [33] 
because the number of the sample is much smaller than the 
dimension of the representative features of images. 
Traditionally, the SSS problem is solved by the regularization 
method [33], as in [24], [25].  

However, the regularization method to solve the SSS 
problem is not a good choice for LDA, as is pointed out by many 
papers on face recognition [20]-[23], [26]. We aim to 
significantly improve the performance of CBIR RF and utilize 
the direct idea to the BDA algorithm in the kernel feature space. 
We name the approach as the direct kernel BDA (DKBDA)[34]. 
DKBDA is motivated by: (a) direct LDA (DLDA) [23], [26], 
has been successfully applied to face recognition; (b) unlike 
face recognition, image retrieval deals with diverse images, so 
the nonlinear properties of image features should be considered 
because of the success of kernel algorithms in pattern 
recognition.  

The DKBDA algorithm can be regarded as an enhanced 
KBDA. According to the kernel trick idea, the original input 
space is first nonlinearly mapped to an arbitrarily high 
dimension feature space, in which the distribution of the 
images’ patterns is linearized. Then, the DLDA idea [23], [26] 
is used to obtain a set of optimal discriminant basis vectors in 
the kernel feature space. The BDA criterion is modified as in 
Liu et al. [20], so that a robust result can be gained. 

The following section describes the related previous work: 
BDA, KBDA, and DLDA; DKBDA is then proposed in Section 
III; in Section IV, an image retrieval system is introduced; in 
Section V, a large number of experiments validate the 
effectiveness and efficiency of DKBDA on a large real world 
image database; possible future work is briefly described in 
Section VI; finally, Section VII draws conclusions. Detailed 
deduction of DKBDA is given in Appendix I; Appendix II 
provides full deduction of the incremental DKBDA (IDKBDA). 

 

II. PREVIOUS WORK 

In this section, previous work including Direct Linear 
Discriminant Analysis (DLDA), Biased Discriminant Analysis 
(BDA), and Kernel Biased Discriminant Analysis (KBDA) are 
introduced. 

A. Direct Linear Discriminant Analysis (DLDA) 

Before describing DLDA [23], we first describe Linear 
Discriminant Analysis (LDA) [18]. 

LDA tries to find the best discriminating subspace for 
different classes. It is spanned by a set of vectors W , which 
aims at maximizing the ratio between bS and wS , the 

within-class scatter matrix and the between-class scatter 
matrix, respectively. 

arg max
.

b

w

=
T

T
W

W S W
W

W S W
                                  (1) 

Assume the training set contains c individual classes and each 

class iC  has iN  samples. Then bS  and wS  are defined as,  
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= ∑m x  is the mean vector of the total 

training set. 
1

1 iN
i

i j
jiN =

= ∑m x  is the mean vector for the 

individual class iC . i
jx  is the jth sample belongs to class iC . 

Therefore, W  can be computed from the eigenvectors of 
1

w b
−S S . Given c equals 2, LDA changes to Fisher discriminant 

analysis (FDA); otherwise, it is multiple discriminant analysis 
(MDA). 

LDA has the SSS problem when the number of the training 
samples is smaller than the dimension of the low-level visual 
features, which is almost always true for CBIR RF. 

Yu et al. [23] propose a DLDA method. It accepts 
high-dimensional data as input, and optimizes Fisher’s criterion 
directly without any feature extraction or dimension reduction 
steps. So, it takes advantage of all the information within and 
outside of the null space of wS . In this approach, bS  is first 

diagonalized, then the null space of bS  is removed, 

0,T
b b=Y S Y D f                                          (3) 

where Y  comprises eigenvectors and bD   comprises the 

corresponding non-zero eigenvalues of bS .  wS  is transformed 

to 
1/ 2 1/ 2 .T

w b w b
− −=K D Y S YD                               (4) 

where wK  is diagonalized by eigen analysis, 

.T
w w=U K U D                                             (5) 

The LDA transformation matrix for classification is defined 
as, 

1/ 2 1/ 2 .b w
− −=W YD UD                                     (6) 

In DLDA, the null space of bS  is removed, and the 

discriminant vectors are restricted in the subspace spanned by 
class centers. It is assumed that the null space of bS  contains no 

discriminative information at all. 

B. Biased Discriminant Analysis (BDA) 

Zhou et al. [24], [25] developed BDA, which defines the 
(1+x)-class classification problem. This means there is an 
unknown number of classes but the user is only interested in one 
class. 

BDA tries to find the subspace to discriminate the positive 
samples (the only class of concern to the user) and negative 
samples (unknown number of classes). It is spanned by a set of 
vectors W  maximizing the ratio between the biased matrix yS  

and the positive covariance matrix xS , 
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Assume the training set contains Nx positive and Ny negative 
samples. xS  and yS  can be defined as (8): 
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where ix  denotes the positive samples, iy  denotes the negative 

samples, and 
1

1 xN

x i
ixN =

= ∑m x  is the mean vector of the positive 

samples. W  can be computed from the eigenvectors of 1
x y
−S S . 

Firstly, BDA minimizes the variance of the positive samples. 
Then it maximizes the distance between the two centers of the 
positive feedbacks and all negative feedbacks. 

C. Kernel Biased Discriminant Analysis (KBDA) 

The data is in a non-linear space, in which the kernel method 
is successfully used. Therefore, BDA is generalized to its kernel 
version, named as KBDA. To obtain the non-linear 
generalization, the linear input space is mapped to a non-linear 
kernel feature space: 

: ,NR →Φ F                                                     (9) 

( ).x Φ xa                                                  (10) 

The data 1 2, ,..., N
n R∈x x x  is mapped from RN into a 

potentially much higher dimensional feature space F. Now, 
given a learning problem, one can consider the BDA in F 
instead of RN. In other words, the idea behind KBDA is to 
perform the BDA in the feature space F instead of the input 
space RN.  

Let x
φS  and y

φS  be the positive within-class scatter and the 

negative scatter with respect to positive centroid matrices in the 
feature space F. They can be respectively expressed as follows: 
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where ( ) ( )
1

1 xN

i
ixN =

= ∑φ x φ x  is the centroid of positive samples, 

Nx is the positive samples’ number, and Ny is the negative 
samples’ number. KBDA determines a set of optimal 

discriminant basis vectors { } 1

m

k k
w

=
=W , which, according to 

eigenvectors of 1
yx

φ φ−S S , can be obtained to solve the following 

eigenvalue problem: 
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The dimension of the feature space F is arbitrarily high, and 
possibly infinite. Fortunately, there is no need to use the exact 

( )Φ x  to calculate W, because the kernel method can be 

utilized to avoid mapping the feature point from the linear input 
space to a nonlinear kernel feature space.  This mapping is 
based on replacing the dot product with a kernel function in the 
input space RN. 

In KBDA based RF, the number of feedback samples is much 
smaller than the dimension of the low-level visual feature. This 
leads to a degenerated x

φS , i.e. the SSS problem or the matrix 

singular problem. Zhou et al. [24], [25] solve the SSS problem 

by the regularized version x
φS  and y

φS , which adds small 

quantities to the diagonal of the scatter matrices. However, this 
is not an optimal solution and sometimes it may lead to an 
ill-posed problem, which limits the performance of their 
method. 

 

III. DIRECT KERNEL BIASED DISCRIMINANT ANALYSIS 

(DKBDA) AND ITS INCREMENTAL VERSION 

The regularization method to solve the SSS problem is not a 
good choice for LDA, as is pointed out by many papers on face 
recognition [20]-[23], and [26]. We aim to significantly 
improve the performance of CBIR RF and utilize the direct idea 
to the BDA algorithm in the kernel feature space. This direct 
method is proposed based on all positive examples are alike and 
each negative example is negative in its own way [24], [25]. We 
name the approach as the direct kernel BDA (DKBDA).  

DKBDA is motivated by: (a) the fact that direct LDA 
(DLDA) [23], [26], recently developed for face recognition, has 
made some advances; (b) Unlike face recognition, image 
retrieval deals with diverse images, so the nonlinear properties 
of image features should be considered because of the success 
of kernel algorithms in pattern recognition.  

DKBDA can be regarded as an enhanced KBDA. According 
to the kernel trick idea, the original input space is first 
nonlinearly mapped to an arbitrarily high dimension feature 
space, in which the distribution of the images’ patterns is 
linearized. Then, the DLDA idea [23], [26] is used to obtain a 
set of optimal discriminant basis vectors in the kernel feature 
space. The BDA criterion is modified as in Liu et al. [20], so 
that a robust result can be gained. First of all, the kernel matrix 
K is introduced: 

,
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where ix  stands for positive feedback samples, and xN  is the 

number of positive feedback samples; iy  stands for negative 

feedback samples, and yN  is the number of negative feedback 

samples. ( ).,.k  is the kernel function. Some typical kernel 

functions can be employed, such as Polynomial, Gaussian, or 
Sigmoid based kernel functions. 

DKBDA begins from the analysis of the negative scatter with 
respect to positive centroid matrix (11). Since the dimension of 

yΦ  could be arbitrarily infinitive, it is impossible to calculate 
T

y y y
φ =S Φ Φ  directly and implement eigen analysis with x

φS . 

Fortunately, this can be avoided through the following analysis: 
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        (15) 

The dimension of T
y yΦ Φ  is the number of negative RF 

samples. The next problem is to obtain the matrix. 

( ) ( ) ( ) ( )
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             (16) 

( ) ( )T
i jφ y φ y , ( ) ( )T

iφ y φ x , ( ) ( )T
jφ x φ y , and 

( ) ( )Tφ x φ x  should then be calculated. The detailed deductions 

can be seen from the Appendix I and the results are given by the 
following formulations: 

( ) ( ) ,1 ,12

1
,T T

Nx xx Nx
xN

=φ x φ x 1 K 1                             (17) 

( ) ( ) ( )
1

1
, ,

xN
T

j m j
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k
N =

= ∑φ x φ y x y                         (18) 

( ) ( ) ( )
1

1
, ,

xN
T

i i m
mx

k
N =

= ∑φ y φ x y x                           (19) 

where ,1Nx1  is an Nx by 1 column vector (all terms equal to 1). 

So the following formulations can be obtained according to 
the kernel matrix (14). 

, , ,2

1 1
,T

y y yy yx Nx Ny Ny Nx xy Ny Ny
x x xN N N

α= − − +Φ Φ K K 1 1 K 1  (20) 

where ,1 ,1
T
Nx xx Nxα = 1 K 1 . ,Nx Ny1  is an Nx by Ny sized matrix (all 

terms equal to 1), the same for ,Ny Nx1 , ,Nx Nx1  and ,Ny Ny1 . 

Do eigen analysis with (20), and obtain the non-zero space 

E of T
y yΦ Φ , so that 0T T

y y y=E Φ Φ E D f . According to (15), 

1/ 2
y y

−=W Φ D E  can be obtained as the normalized non-zero 

subspace, which can diagonalize the T
y yΦ Φ , i.e. 0T

y
φW S W f . 

Here, no need to calculate 1/ 2
y y

−=W Φ D E . Similar to the 

DLDA, the positive with-in class scatter matrix is projected 
onto the non-zero space: 

1/ 2 1/ 2 .T T T
x y y x y y
φ φ− −=W S W D E Φ S Φ ED                     (21) 

From (21), to calculate 1/ 2
y y

−=W Φ D E  can be avoided. The 

new problem is to reckon T
y x y

φΦ S Φ . With the following 

deduction (22)-(26), conclusion can be drawn that T
y x y

φΦ S Φ  is 

only related to the kernel matrix (14), just like T
y yΦ Φ . 

( ) ( ).
TT T T T T

y x y y x x y x y x y
φ = =Φ S Φ Φ Φ Φ Φ Φ Φ Φ Φ       (22) 

To compute T
y x y

φΦ S Φ , only need to calculate T
x yΦ Φ . 

( ) ( ) ( ) ( )
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1,2,...,
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T
x yΦ Φ  should be calculated after ( ) ( )T

iφ x φ x , 

( ) ( )T
jφ x φ y , and ( ) ( )Tφ x φ x . Here, ( ) ( )T

jφ x φ y  and 

( ) ( )Tφ x φ x  are calculated in (18) and (17) respectively. In 

(24), ( ) ( )T
iφ x φ x  is reckoned. 

( ) ( ) ( )
1

1
, .

xN
T

i i m
mx

k
N =

= ∑φ x φ x x x                      (24) 

Then T
x yΦ Φ is obtained by (25). 

, , ,2

1 1
.T

x y xy xx Nx Ny Nx Nx xy Nx Ny
x x xN N N

α= − − +Φ Φ K K 1 1 K 1  (25) 

Then T
y x y

φΦ S Φ  is obtained by (26) and detailed deduction 

can be found in Appendix I: 

 
Fig. 1.  System flow chart. 
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With the idea of DLDA, do the eigen analysis of 
1/ 2 1/ 2T T T

x x y y x y y
φ φ φ− −= =S W S W D E Φ S Φ ED
)

, and select the 

eigenvectors V of x
φS
)

 with the smallest eigenvalues xD , i.e. 

.T
x x
φ =V S V D
)

                                            (27) 

Finally, the overall projection matrix 1/ 2 1/ 2
y x
− −=H ED VD is 

established. 
It is possible that some diagonal values in the matrix xD  are 

zero, which means that 1/ 2
x
−D  does not exist. The zero 

eigenvalue problems can be avoided based on a modified 
KBDA criterion, according to [20]. The modified KBDA 
criterion is: 

( )
arg max

.
y

x y

φ

φ φ
=

+

T

TW

W S W
W

W S S W
                     (28) 

The modified criterion equals to the original KBDA criterion 
according to the proof in [20]. Upon the modified KBDA 
criterion, the singular value problem can be avoided because 

y
φ =TW S W I . 

With the optimal discriminant directions, which are drawn 
from the previous derivations, the projection of a new pattern 
z to H  is given by: 

( ) ( ) ( ){ } ( ) ( )

( ) ( )

1/ 2 1/ 2

1 1

1
       , , .

T
T T

y y x y

Ny Nx
T

i j
i jx

f

k k
N

φ φ− −

= =

= ⋅ =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑

z Φ D E VD z H Φ z

H y z x z
      (29) 

DKBDA algorithm is summarized in Table 1. 

The ranks of K , T
y yΦ Φ  and T

x yΦ Φ  

are ( )rank x yN N≤ +K , ( )rank T
y y yN≤Φ Φ  and ( )rank T

x yΦ Φ  

( )min 1,x yN N≤ − ; the rank of T
y x y

φΦ S Φ  can be calculated by 

( )rank T
y x y

φΦ S Φ ( ) ( )( )rank
TT T

x y x y= Φ Φ Φ Φ ( )rank T
x y= Φ Φ  

( )min 1,x yN N≤ −  ; ( ) ( )rank min 1,x yN N≤ −H is the rank of 

H , therefore, ( )( )dim 1xf N≤ −z . DKBDA chooses the 

intersection space of x y
φ φ∩S S , where L

x x
φ φ= ⊕R S S  ( L  is 

determined by the kernel parameter and kernel function). 
The above theoretical rank analyses show that DKBDA 

eliminates the SSS problem. Based on DKBDA, the CBIR RF 
performances can be much improved. A large number of 
experimental results are given in Section V. 

DKBDA can be accelerated by the incremental technique. 
The deduction of the incremental DKBDA (IDKBDA) is given 
in Appendix II. The algorithm of IDKBDA is provided in Table 
2 and many comparative experimental results are also provided 
in the Section V of this article. 

IV. IMAGE RETRIEVAL SYSTEM 

With CBIR the search engine is required to feedback the most 
semantically relevant images after each previous RF iteration. 
The user will not label many images for each iteration and will 
usually only do a few iterations. Thus, the following CBIR 

 
Fig. 2. User interface of the system. 

TABLE II 
IDKBDA ALGORITHM 

Input 

In the ith iteration, we have Nx positive samples and Ny negative 
samples and in the (i+1)th iteration, we have Lx incremental 
positive samples and Ly incremental negative samples. ix  stands 

for the positive feedback samples; iy  stands for the negative 

feedback samples; ( ).,.k  is the kernel function; z  stands for 

the testing sample. 

a. Calculate the incremental kernel matrices 1
xxK , 1

xyK , 1
yxK , 1

yyK , 

2
xxK , 2

xyK , 3
xyK , and 2

yyK  according to Appendix II. 

b. Calculate � �T
y yΦ Φ , the incremental version of T

y yΦ Φ , according to 

Appendix II. 

c. Extract the prime subspace of � �T
y yΦ Φ  by eigen analysis or the 

incremental SVD in theorem 2. Then E  is extracted to satisfy 

� � 0
TT
y y y=E Φ Φ E D f . 

d. Calculate � �T
x yΦ Φ , the incremental version of T

x yΦ Φ , according to 

Appendix II. 
e. With the modified KBDA criterion, select eigenvectors V  of 

1/ 2 1/ 2T T
x y y x y y
φ φ− −=S D E Φ S Φ ED
)

%  with the smallest eigenvalues xD  by 

eigen analysis. Here, � % � � �( ) � �( )TT T T
y y x y x yx

φ
=Φ S Φ Φ Φ Φ Φ . 

f. Calculate the kernel projection matrix 1/ 2 1/ 2
y x
− −=H ED VD . 

a. For a given pattern, the IDKBDA transformation is: 

( ) ( ) ( )
1 1

1
, ,

Ny Nx
T

i j
i jx

f k k
N= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑z H y z x z . 

Output ( )f z  stands for the projected testing sample. 
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framework is used into which any RF algorithm can be 
embedded. 

As shown in Figure 1, when a query is submitted, its 
low-level visual features are extracted. Then, all images in the 
database are sorted based on a similarity metric. If the user is 
satisfied with the result, the retrieval process is ended. If the user 
is not satisfied s/he can label some images as positive feedbacks 
and/or some images as negative feedbacks. Using this feedback 
process, the system is trained based on machine learning using 
the embedded RF algorithm. Then, all the images are re-sorted 
based on the recalculated similarity metric. If the user is still not 
content with the result, s/he repeats the process.  

Figure 2 shows our query by example (QBE) system GUI. In 
our experiments the user first selects an image from the gallery 
and this image is then shown in the Preview Image window. 
Secondly, the user licks the “Retrieval” button, and the images 
in the gallery are sorted using the similarity metric. Then, the 
user provides feedback by clicking on the “thumb up” or “thumb 
down” button according to his/her judgment of the relevance of 
the sorted images. Finally the user clicks the “Retrieval” button 
to re-sort the images in the gallery, which uses this feedback 
information. The last two steps can iterate to obtain a more 
satisfactory result. The number of iterations is shown in the 
Query Image/# Feedback window. 

The “All Images” tab-page excludes the images marked as 
either relevant or irrelevant in previous iterations. For the next 
iteration only these images are re-sorted using the further 
modified metric. Consequently, the images marked for next  
iteration do not overlap with the previous feedback images. The 
“Retrieved” tab-page contains all images marked as relevant in 
previous iterations plus a number of the top images from the 
latest iteration. 
 

V. EXPERIMENT 

In this section we report the results of a large number of 
experiments in which we took the CBIR platform described in 
the previous section and compared the performance between 
KDBA, CSM, and our new DKBDA algorithms for RF. For the 
experiments we used part of the Corel image database [9], a real 
world database comprising 10,800 images. The images shown 
in Figure 2 are from this database. 

In the Corel Photo Gallery, each folder includes 100 images. 
However, the folders’ names are not suitable as conceptual 
classes, because many images with similar concepts are not in 
the same folder and some images whose semantic contents are 
quite different are in the same folder. The existing folders in the 
Corel Photo Gallery were therefore ignored and all 10,800 
images were manually divided into 80 concept groups. These 
concept groups were only used in the evaluation of the results of 
our experiments. 

Generally in a CBIR RF system images are represented by the 
three main features: color [3], [4], and [10]-[12], texture 
[5]-[10], [12], and shape [11]-[13]. For the color feature we 
select three measures, hue, saturation, and value. We use these 

to form a histogram [3]. Hue and saturation are both quantized 
into 8 bins and value into 4 bins. A 128 dimensional Color 
coherence vector (CCV) [4] in Lab color space and a 9 
dimensional color moment feature in Luv color space are both 
employed. For the texture feature a pyramidal wavelet 
transform (PWT) is extracted from the Y component in YCbCr 
space. Every image is decomposed by the traditional 
pyramid-type wavelet transform with Haar wavelet. The mean 
and standard deviation are calculated in terms of the sub-bands 
at each decomposed level. PWT results in a feature vector of 24 
values. In addition, we also extract the tree-structured wavelet 
transform (TWT) in form of a 104 dimensional feature.  

Each of these features has its own power to characterize a 
type of image content. The system combines the color and 
texture features into a feature vector, and then normalizes it into 
a normal distribution. 

Precision is widely used to evaluate retrieval performance. It 
is the ratio of the number of relevant images retrieved in the top 
N retrieved images. In our experiments, comparisons are made 
of the performances of the BDA, KBDA [24], [25], SVM based 
RF [28], and the direct BDA (DBDA is similar to the DLDA. 
We can substitute bS  and wS  by yS  and xS , respectively. 

With this substitution, this direct version of BDA is obtained), 
DKBDA and its incremental version, IDKBDA. 

Experiments with 300 different query images were 
performed. In the experiments there were 9 iterations. For each 
iteration the top 48 images resulting from the re-sorted results 
were examined serially from the top and each image was marked 
as correct or incorrect. The first 5 correct images and the first 5 
incorrect images were then used as feedback unless fewer such 
images were found among the top 48 in which case the fewer 
number found was used as feedback. 

As can be seen in Figure 3, the proposed DBDA algorithm 
consistently outperforms the BDA algorithm and the SVM RF 
algorithm. The images for the 300 query experiments were 
randomly selected. The first six figures show the average 
precision for the 300 experiments for the top 10, 20, 30, 40, 50, 
and 60 results. We note that for the results DBDA clearly gives 
a superior performance. There is more benefit from further 
iterations. In the case of the top 10 results, after 4 iterations, the 
precision of the proposed DBDA is already higher than 90% 
while 7 iterations are required for the BDA algorithm and more 
than 9 iterations for the SVM RF. When more top results are 
considered, DKBDA again gives superior performance. The last 
six figures show the standard deviation for the 300 experiments 
for the top 10, 20, 30, 40, and 60 results. These six figures 
correspond to the above six average precision figures, 
respectively. We note that the standard deviation of the DBDA 
is the smaller than that of BDA and SVM RFs under all of our 
experimental conditions. This shows that the proposed DBDA 
is stable for the retrieval problem. 

As shown in Figure 4, in the kernel space the DKBDA also 
outperforms the KBDA consistently. The first six figures show 
the average precision for the 300 experiments for the top 10, 20, 
30, 40, 50, and 60 results. Comparing with the experimental 
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results in Figure 3, both KBDA and DKBDA perform better 
than their non-kernel space versions. In the case of the top 10 
results, after 3 iterations, precisions of both KBDA and 
DKBDA are higher than 90%. Note that after 3 iterations there 
is little further improvement with any of the algorithms but that 
DKBDA still clearly gives a superior performance. The 
corresponding standard deviation is shown by the last six 
figures in Figure 4 for the top 10, 20, 30, 40, and 60 results, 
respectively. DKBDA gives smallest values in most cases. In 
other word, the DKBDA is more stable than KBDA. 

DKBDA is also compared with its incremental version 
IDKBDA in all the experiments reported in Figure 4. For all 
situations, the curves of IDKBDA press close to the DKBDA 
curves. Therefore, IDKBDA is proved to be of approximately 
the same capabilities as DKBDA, but it can speed up the 
DKBDA remarkably by saving about 20% of the running time 
(9 hours and 11 hours respectively for all the 300 queries and 9 
iterations for each query). 

The problem of mislabeled samples is an open issue in small 
sample learning. The number of labeled samples is small.  
Therefore, when the number of the mislabeled samples is  
smaller than the correctly labeled samples, the learning machine 
can still obtain a correct model for the retrieval  
process by ignoring the minor mistake. However, if a user 
mislabels too many images during the relevance feedback, the 
learning will be misled to an incorrect retrieval model. 
Thereafter, the retrieval system cannot give a satisfactory 
performance.  

In our experiments, the computer does the relevance 
feedback iterations automatically without mislabeled samples 
using the 80 concept groups described previously.  

For an experiment the concept group of the randomly 
selected image, which was to be used as the query image, was 
noted. For each iteration this concept group was compared with 
the concept groups of the top sorted images and where they are  
the same the image was labelled the positive feedback (“thumbs 
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Fig. 3. The average precision and the standard deviation of DBDA, BDA, and SVM. 
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up”) and where they are different the negative feedback 
(“thumbs down”).  

In all experiments, the Gaussian kernel ( )
2

, ek ρ− −= x yx y  is 

chosen. For SVM RF we chose 1ρ =  and for the KBDA, 

DKBDA, and IDKBDA based RFs we chose 0.1ρ = . These 

values were chosen to give the best performance for these 
methods, respectively. 

 

VI. DISCUSSION AND FUTURE WORK 

In the proposed CBIR system and its RF algorithms, several 
aspects can be improved. For example, indexing techniques can 
improve both the speed and the precision. More low-level visual 
features can help better characterize the content of an image. 
The parameters of the kernel-based RF algorithms can be 
further tuned. 

A. Indexing: a much larger image database will be utilized in 
the current platform. To accelerate the retrieval speed, the 
indexing of database is important. Recently, many 
image-indexing algorithms have been developed. There are two 
major styles, each of which has its intrinsic advantage. (1) 
Classification based indexing [35] focuses on the improvement 
of retrieval precision. In this method, each image is assigned 
one or more distinct labels. Then, based on these labels, the 
indexing can be constructed through semantic classifications. 
Thereafter, the search results will cater to most of the users. (2) 
Low-level visual feature based indexing is employed to speed 
up the retrieval. There are many feature-based indexing 
approaches such as a variety of tree-based indexing structures 
for high-dimensional databases and VQ and VA methods [2]. A 
promising approach is to combine the feature and classification 
information in the indexing structure, so that both speed and 
precision can be improved. 

B. Image Representation: there are many other low-level 

0 1 2 3 4 5 6 7 8 9

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Iterations

P
re

ci
si

on

Retrieval Precision in Top10 Results

DKBDA

IDKBDA
KBDA

0 1 2 3 4 5 6 7 8 9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Iterations

P
re

ci
si

on

Retrieval Precision in Top20 Results

DKBDA

IDKBDA
KBDA

0 1 2 3 4 5 6 7 8 9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Iterations

P
re

ci
si

on

Retrieval Precision in Top30 Results

DKBDA

IDKBDA
KBDA

 

0 1 2 3 4 5 6 7 8 9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Iterations

P
re

ci
si

on

Retrieval Precision in Top40 Results

DKBDA
IDKBDA
KBDA

0 1 2 3 4 5 6 7 8 9
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of Iterations

P
re

ci
si

on

Retrieval Precision in Top50 Results

DKBDA

IDKBDA
KBDA

0 1 2 3 4 5 6 7 8 9

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of Iterations

P
re

ci
si

on

Retrieval Precision in Top60 Results

DKBDA

IDKBDA
KBDA

 

0 1 2 3 4 5 6 7 8 9
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Number of Iterations

S
ta

nd
ar

d 
D

ev
ia

tio
n

Retrieval Standard Deviation in Top10 Results

DKBDA
IDKBDA
KBDA

0 1 2 3 4 5 6 7 8 9

0.16

0.18

0.2

0.22

0.24

0.26

Number of Iterations

S
ta

nd
ar

d 
D

ev
ia

tio
n

Retrieval Standard Deviation in Top20 Results

DKBDA

IDKBDA
KBDA

0 1 2 3 4 5 6 7 8 9
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

Number of Iterations
S

ta
nd

ar
d 

D
ev

ia
tio

n

Retrieval Standard Deviation in Top30 Results

DKBDA

IDKBDA
KBDA

 

0 1 2 3 4 5 6 7 8 9
0.2

0.22

0.24

0.26

0.28

0.3

0.32

Number of Iterations

S
ta

nd
ar

d 
D

ev
ia

tio
n

Retrieval Standard Deviation in Top40 Results

DKBDA
IDKBDA
KBDA

0 1 2 3 4 5 6 7 8 9
0.18

0.2

0.22

0.24

0.26

0.28

0.3

Number of Iterations

S
ta

nd
ar

d 
D

ev
ia

tio
n

Retrieval Standard Deviation in Top50 Results

DKBDA

IDKBDA
KBDA

0 1 2 3 4 5 6 7 8 9
0.18

0.2

0.22

0.24

0.26

0.28

0.3

Number of Iterations

S
ta

nd
ar

d 
D

ev
ia

tio
n

Retrieval Standard Deviation in Top60 Results

DKBDA

IDKBDA
KBDA

 
Fig. 4. The average precision and the standard deviation of DKBDA, IDKBDA, and KBDA. 
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visual features for image representation. New features may 
outperform the traditional ones, e.g. the Gabor wavelet feature 
[6] and the edge direction histogram [11].  

C. Kernel Parameter Selection: In DKBDA, different 
choices of kernel parameters affect its performance. How to 
select the kernel parameters is still an open issue. Recently, the 
tuning method was used to select the SVM parameters [28]. In 
the future, we plan to generalize the tuning method to select the 
parameters of kernel-based algorithms. For RF in CBIR, the 
training size of the training set is small, so the leave-one-out 
method to tune the parameters can be used. 

 

VII. CONCLUSION 

Utilizing the direct idea to the biased discriminant analysis, 
this paper proposed a straightforward method of direct kernel 
BDA to solve the small sample size problem of the modified 
BDA in the kernel feature space. DKBDA removes the null 
space of the negative scatter with respect to the positive centroid 
matrix, and then the eigenvectors of the positive with-in class 
scatter matrix corresponding to the smallest eigenvalues are 
extracted as the most discriminant directions in the kernel space. 
Incremental DKBDA is also developed to speed up the 
DKBDA. From a large number of evaluation experiments based 
on the Corel image database of 10, 800 images with 80 semantic 
concepts, the conclusion can be drawn that DKBDA and 
IDKBDA outperform both the traditional kernel BDA and the 
support vector machine RF. 

 

APPENDIX I 
T
y yΦ Φ , T

x yΦ Φ , and T
y x y

φΦ S Φ  are calculated. 

1. Calculate T
y yΦ Φ  
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where ,1Nx1  is an Nx by 1 column vector (all terms equal to 1). 

Consequently, T
y yΦ Φ  is given by: 
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where ,1 ,1
T
Nx xx Nxα = 1 K 1 . ,Nx Ny1 , ,Ny Nx1 , ,Nx Nx1 , and ,Ny Ny1  are Nx 

by Ny sized matrices with all terms equal to 1. 
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Therefore, T
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1 1

1 1 1

1 1

1

yx xy yx xx Nx Ny yx Nx Nx xy yx Nx Ny
x x x

Ny Nx xx xy Ny Nx xx xx Nx Ny Ny Nx xx Nx Nx xy
x x x

Ny Nx xx Nx Ny yx Nx Nx xy yx Nx Nx xx Nx Ny

xx x

yx Nx Nx Nx Nx xy
x

N N N

N N N

NN N

N N

α

α

α

= − − +

− + +

− − +

+ −

K K K K 1 K 1 K K 1

1 K K 1 K K 1 1 K 1 K

1 K 1 K 1 K K 1 K 1

K 1 1 K , , ,3 2

2

, , , , , ,3 3 4

2 3

1 1
,

yx Nx Nx Nx Ny Ny Nx xy
x x

Ny Nx xx Nx Ny Ny Nx Nx Nx xy Ny Nx Nx Ny
x x x

x x x

N

N N N

N N N

α

α α α

α

+

− − +

= − + −

K 1 1 1 K

1 K 1 1 1 K 1 1

A B C D

where 

( )
2

, , ,2 3
,yx xy yx Nx Ny Ny Nx xy Ny Ny

x xN N

α α= + + +A K K K 1 1 K 1

, ,

, ,

,
yx xx Nx Ny yx Nx Nx xy

Ny Nx xx xy yx Nx Nx xy

+⎛ ⎞
= ⎜ ⎟⎜ ⎟+ +⎝ ⎠

K K 1 K 1 K
B

1 K K K 1 K
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, , , ,

, , ,

, , ,

, , ,

,

.

Ny Nx xx xx Nx Ny Ny Nx xx Nx Nx xy

yx Nx Nx xx Nx Ny x yx Nx Nx xy

Ny Nx xx Nx Ny x yx Nx Ny

Ny Nx xx Nx Ny x Ny Nx xy

N

N

N

+⎛ ⎞
= ⎜ ⎟⎜ ⎟+ +⎝ ⎠

+⎛ ⎞
= ⎜ ⎟⎜ ⎟+ +⎝ ⎠

1 K K 1 1 K 1 K
C

K 1 K 1 K 1 K

1 K 1 K 1
D

1 K 1 1 K

 

APPENDIX II 

DKBDA can be accelerated by the incremental technique. 
Assume in the ith iteration, we have Nx positive samples and Ny 
negative samples and in the (i+1)th iteration, we have Lx 
incremental positive samples and Ly incremental negative 
samples. The deduction is given: 

In the ith iteration, the kernel matrix is 
0 0

0 0
xx xy

yx yy

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

K K
K

K K
, 

where 0 0 T
yx xy=K K , and in the (i+1)th iteration, the kernel 

matrix is �
� �

� �

xx xy

yx yy

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

K K
K

K K
, where � �T

yx xy=K K . 

�
0 1

1 2
xx xx

xx
T
xx xx

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

K K
K

K K
, �

0 1

2 3
xy xy

xy

xy xy

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

K K
K

K K
, and 

�
0 1

1 2
yy yy

yy T
yy yy

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

K K
K

K K
. We denote the elements of these 

sub-matrices by the kernel function: 

( ) ( )
( )

0 0
1 1
1 1

0 0 0
1
1

, ,

,

xx i j xy i ji Nx i Nx
j Nx j Ny

T
yx xy yy i j i Ny

j Ny

k k

k

≤ ≤ ≤ ≤
≤ ≤ ≤ ≤

≤ ≤
≤ ≤

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

⎡ ⎤= = ⎣ ⎦

K x x K x y

K K K y y
 

( ) ( )
( )

1 1
1 1

1 1

1 1 1
1

1

, ,

,

xx i j xy i ji Nx i Nx
Nx j Nx Lx Ny j Ny Ly

T
yx xy yy i j i Ny

Ny j Ny Ly

k k

k

≤ ≤ ≤ ≤
+ ≤ ≤ + + ≤ ≤ +

≤ ≤
+ ≤ ≤ +

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

⎡ ⎤= = ⎣ ⎦

K x x K x y

K K K y y
 

( ) ( )
( ) ( )

2 2
1 1
1 1

3 2
1 1
1 1

, ,

, ,

xx i j xy i jNx i Nx Lx Nx i Nx Lx
Nx j Nx Lx j Ny

xy i j yy i jNx i Nx Lx Ny i Ny Ly
Ny j Ny Ly Ny j Ny Ly

k k

k k

+ ≤ ≤ + + ≤ ≤ +
+ ≤ ≤ + ≤ ≤

+ ≤ ≤ + + ≤ ≤ +
+ ≤ ≤ + + ≤ ≤ +

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦

K x x K x y

K x y K y y
 

The incremental DKBDA depends on the incremental kernel 
matrix and eigenvalue decomposition. 

The incremental version of T
y yΦ Φ : 

� �

� �

�
�

( )
�

( )

,

, ,2

0 1
, ,

1 2 2
, ,

0 2
, ,

1 3

1

1

1

yy yx Nx Lx Ny Ly

T x x
y y

xyNy Ly Nx Lx Ny Ly Ny Ly
x x x x

Ny Ny Ny Lyyy yy

T
Ly Ny Ly Lyyy yy x x

T T
Nx Ny Nx Lyxy xy

T T
Lxy xyx x

N L

N L N L

N L

N L

α

α

+ +

+ + + +

⎛ ⎞−⎜ ⎟+⎜ ⎟= ⎜ ⎟
− +⎜ ⎟⎜ ⎟+ +⎝ ⎠

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤
− ⎢ ⎥+ ⎢ ⎥⎣ ⎦

K K 1

Φ Φ
1 K 1

1 1K K
1 1K K

1 1K K
1K K , ,

0 1
, ,

2 3
, ,

1

x Ny Lx Ly

Ny Nx Ny Lx xy xy

Ly Nx Ly Lx xy xyx xN L

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤⎡ ⎤
− ⎢ ⎥⎢ ⎥+ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1

1 1 K K
1 1 K K

�

( )

0 1
, ,

1 2 2
, ,

0 2 0 2
, , , ,

1 3 1 3
, , , ,

0 2
, ,

1

1

Ny Ny Ny Lyyy yy

T
Ly Ny Ly Lyyy yy x x

T T T T
xy Nx Ny xy Lx Ny xy Nx Ly xy Lx Ly

T T T T
xy Nx Ny xy Lx Ny xy Nx Ly xy Lx Lyx x

Ny Nx xy Ny Lx xy

x x

N L

N L

N L

α⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤+ +
− ⎢ ⎥+ ++ ⎢ ⎥⎣ ⎦

+
−

+

1 1K K

1 1K K

K 1 K 1 K 1 K 1

K 1 K 1 K 1 K 1

1 K 1 K 1 1 3
, ,

0 2 1 3
, , , ,

11 12 11 12 12

21 22 12 22 12 22

Ny Nx xy Ny Lx xy

Ly Nx xy Ly Lx xy Ly Nx xy Ly Lx xy

T
y y

T T

⎡ ⎤+
⎢ ⎥+ +⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

K 1 K

1 K 1 K 1 K 1 K

Ψ Ψ Ψ Ψ Φ Φ Ψ
Ψ Ψ Ψ Ψ Ψ Ψ

�

 

�

( )
�

( )

0 2
, ,0

11 ,20 2
, ,

0 2
, ,1

12 ,21 3
, ,

1 3
, ,2

22

1

1

1

T T
xy Nx Ny xy Lx Ny

yy Ny Ny
x x Ny Nx xy Ny Lx xy x x

T T
xy Nx Ly xy Lx Ly

yy Ny Ly
x x Ny Nx xy Ny Lx xy x x

T T
xy Nx Ly xy Lx

yy
x x

N L N L

N L N L

N L

α

α

⎛ ⎞+
⎜ ⎟= − +
⎜ ⎟+ + + +⎝ ⎠
⎛ ⎞+
⎜ ⎟= − +
⎜ ⎟+ + + +⎝ ⎠

+
= −

+

K 1 K 1
Ψ K 1

1 K 1 K

K 1 K 1
Ψ K 1

1 K 1 K

K 1 K 1
Ψ K

�

( ) ,21 3
, ,

Ly

Ly Ly

Ly Nx xy Ly Lx xy x xN L

α

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪

⎛ ⎞⎪
⎜ ⎟ +⎪ ⎜ ⎟+ + +⎪ ⎝ ⎠⎩

1
1 K 1 K

 

� �

( )

0 1
,1

,1 ,1 1, 1, 1 2
,1

0 1 1 2
1, ,1 1, ,1 1, ,1 1, ,1

1 1 2
1, ,1 1, ,1 1, ,1

  

  

NxT xx xx
xxNx Lx Nx Lx Nx Lx T

Lxxx xx

T
Nx xx Nx Lx xx Nx Nx xx Nx Lx xx Lx

T
Lx xx Nx Nx xx Nx Lx xx Lx

α

α

+ +

⎡ ⎤ ⎡ ⎤
⎡ ⎤= = ⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦⎣ ⎦
= + + +

= + + +

1K K
1 K 1 1 1

1K K

1 K 1 1 K 1 1 K 1 1 K 1

1 K 1 1 K 1 1 K 1

 

11
T
y y ε− ≤Ψ Φ Φ , where ε  is a small value. 

,1 ,1
T
Nx xx Nxα = 1 K 1 . ,Nx Ny1  is an Nx by Ny sized matrix with all 

terms equal to 1, so are ,Ny Nx1 , ,Nx Nx1  and ,Ny Ny1 . 

The incremental version of T
x yΦ Φ : 

� �

� �

�
�

( )
�

( )

,

, ,2

0 1
, ,

2 3 2
, ,

0 1
, ,

1 2
,

1

1

1

xy xx Nx Lx Ny Ly
T x x
x y

xyNx Lx Nx Lx Nx Lx Ny Ly
x x x x

Nx Ny Nx Lyxy xy

Lx Ny Lx Lyxy xy x x

Nx Ny Nx Lyxx xx
T

Lx Ny Lx x xx xx

N L

N L N L

N L

N L

α

α

+ +

+ + + +

⎛ ⎞−⎜ ⎟+⎜ ⎟= ⎜ ⎟
− +⎜ ⎟⎜ ⎟+ +⎝ ⎠

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤
− ⎢ ⎥+ ⎣ ⎦

K K 1

Φ Φ
1 K 1

1 1K K
1 1K K

1 1K K
1 1K K

�

( )

,

0 1
, ,

2 3
, ,

0 1
, ,

2 3 2
, ,

0 1 0 1
, , , ,

1 2
,

1

1

x Ly

Nx Nx Nx Lx xy xy

Lx Nx Lx Lx xy xyx x

Nx Ny Nx Lyxy xy

Lx Ny Lx Lyxy xy x x

xx Nx Ny xx Lx Ny xx Nx Ly xx Lx Ly
T
xx Nx Ny xxx x

N L

N L

N L

α

⎡ ⎤
⎢ ⎥
⎣ ⎦
⎡ ⎤⎡ ⎤

− ⎢ ⎥⎢ ⎥+ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
+⎢ ⎥ ⎣ ⎦⎣ ⎦

+ +
−

++

1 1 K K

1 1 K K

1 1K K
1 1K K

K 1 K 1 K 1 K 1

K 1 K 1 1 2
, , ,

0 2 1 3
, , , ,

0 2 1 3
, , , ,

11 12 12

21 22 21 22

1

T
Lx Ny xx Nx Ly xx Lx Ly

Nx Nx xy Nx Lx xy Nx Nx xy Nx Lx xy

Lx Nx xy Lx Lx xy Lx Nx xy Lx Lx xyx x

T
x y

N L

⎡ ⎤
⎢ ⎥+⎢ ⎥⎣ ⎦
⎡ ⎤+ +

− ⎢ ⎥+ ++ ⎢ ⎥⎣ ⎦
⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

K 1 K 1

1 K 1 K 1 K 1 K

1 K 1 K 1 K 1 K

Π Π Φ Φ Π
Π Π Π Π

�
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�

( )
�

( )

0 1
, ,0

11 ,20 2
, ,

0 1
, ,1

12 ,21 3
, ,

1 2
, ,2

21

1

1

1

xx Nx Ny xx Lx Ny

xy Nx Ny
x x Nx Nx xy Nx Lx xy x x

xx Nx Ly xx Lx Ly

xy Nx Ly
x x Nx Nx xy Nx Lx xy x x

T
xx Nx Ny xx Lx Ny

xy
x x L

N L N L

N L N L

N L

α

α

⎛ ⎞+
⎜ ⎟= − +
⎜ ⎟+ + + +⎝ ⎠
⎛ ⎞+
⎜ ⎟= − +
⎜ ⎟+ + + +⎝ ⎠

+
= −

+ +

K 1 K 1
Π K 1

1 K 1 K

K 1 K 1
Π K 1

1 K 1 K

K 1 K 1
Π K

1

�

( )
�

( )

,20 2
, ,

1 2
, ,3

22 ,21 3
, ,

1

Nx Ly

x Nx xy Lx Lx xy x x

T
xx Nx Ly xx Lx Ly

xy Lx Ly
x x Lx Nx xy Lx Lx xy x x

N L

N L N L

α

α

⎧
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨

⎛ ⎞⎪
⎜ ⎟ +⎪ ⎜ ⎟+ +⎪ ⎝ ⎠

⎪
⎛ ⎞+⎪ ⎜ ⎟= − − +⎪ ⎜ ⎟+ + + +⎪ ⎝ ⎠⎩

1
K 1 K

K 1 K 1
Π K 1

1 K 1 K

 

11
T
x y ξ− ≤Π Φ Φ , where ξ  is a small value. 

Then we have the incremental version of � % �T
y yx

φ
Φ S Φ  as: 

� % � � �( ) � �( ) 12 12

21 22 21 22

12 21 12 12 22

21 22 21 21 12 22 22

.

TT TTT T T x y x y
y y x y x yx

T T T T T
y x x y y x

T T T T T
x y

φ ⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤+ +

= ⎢ ⎥+ +⎢ ⎥⎣ ⎦

Φ Φ Π Φ Φ Π
Φ S Φ Φ Φ Φ Φ

Π Π Π Π

Φ Φ Φ Φ Π Π Φ Φ Π Π Π
Π Φ Φ Π Π Π Π Π Π

 

To conduct the incremental learning, we also need the 
incremental singular value decomposition (SVD). 

Theorem 1 ([35]): 

If T =USV M , then [ ]
0

T

T

⎡ ⎤
⎢ ⎥
⎣ ⎦

S U C
U J

J H

0

0

T
⎡ ⎤
⎢ ⎥
⎣ ⎦

V

I
 

[ ]= M C , where ( ) QR DecompositionT= − ⎯⎯⎯⎯⎯⎯→H I UU C JK . 

Let SVD ' ' '
0

T

T

⎡ ⎤
= ⎯⎯⎯→⎢ ⎥
⎣ ⎦

S U C
Q U S V

J H
, then we get the 

incremental version of SVD as: 

[ ]( ) [ ]0
' ' '

0

T
⎛ ⎞⎡ ⎤

=⎜ ⎟⎢ ⎥
⎣ ⎦⎝ ⎠

V
U J U S V M C

I
. 

Theorem 2: 

Given T =USV M , then 
⎡ ⎤
⎢ ⎥
⎣ ⎦

M C

T
can be decomposed by: 

[ ]( )' 0

0

' 0
0

' '0
' ' ' 0

0

T

T

T

⎡ ⎤⎡ ⎤ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎡ ⎤⎛ ⎞⎡ ⎤⎢ ⎥

⎛ ⎞⎡ ⎤ ⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

M C U J U
T I

S
V

V JV
T V H J I

I

 

where  

QR Decomposition0 0
' ' ' ' '

0 0

T
T T

⎛ ⎞⎡ ⎤⎡ ⎤
= − ⎯⎯⎯⎯⎯⎯→⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

V V
H I V V T J K

I I

.Let 

' 0

' '' '' ''0
' ' '

0

SVD
T

⎡ ⎤
⎢ ⎥= ⎯⎯⎯→⎛ ⎞⎡ ⎤⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

S

Q U S VV
T V H J

I

 and the 

incremental SVD of the matrix 
⎡ ⎤
⎢ ⎥
⎣ ⎦

M C

T
 is: 

[ ]( ) 0' 0
'' '' ' ' ''

00

TT⎛ ⎞⎡ ⎤ ⎛ ⎞⎡ ⎤⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟= ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦⎝ ⎠⎣ ⎦⎝ ⎠

M C VU J U
U S V J V

T II

.Theorem 2 can be obtained from theorem1 easily. 
The incremental DKBDA can be obtained with the theorem 

2. Two conditions can guarantee its rightness: 

1. 11
T
y y ε− ≤Ψ Φ Φ , where ε  is a small value. 

2. 11
T
x y ξ− ≤Π Φ Φ , where ξ  is a small value. 

With the two conditions (for the incremental SVD) and the 

incremental computation of the kernel matrix K , T
y yΦ Φ , 

T
x yΦ Φ , and T

y x y
φΦ S Φ , the incremental version DKBDA can be 

obtained as in Table 2. 
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