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ABSTRACT 

In today’s fast-paced world, while the number of channels of 
television programming available is increasing rapidly, the time 
available to watch them remains the same or is decreasing. Users 
desire the capability to watch the programs time-shifted (on-
demand) and/or to watch just the highlights to save time.  In this 
paper we explore how to provide for the latter capability, that is 
the ability to extract highlights automatically, so that viewing 
time can be reduced. 

We focus on the sport of baseball as our initial target---it is a very 
popular sport, the whole game is quite long, and the exciting 
portions are few.  We focus on detecting highlights using audio-
track features alone without relying on expensive-to-compute 
video-track features.  We use a combination of generic sports 
features and baseball-specific features to obtain our results, but 
believe that many other sports offer the same opportunity and that 
the techniques presented here will apply to those sports.  We 
present details on relative performance of various learning 
algorithms, and a probabilistic framework for combining multiple 
sources of information.  We present results comparing output of 
our algorithms against human-selected highlights for a diverse 
collection of baseball games with very encouraging results. 
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1. INTRODUCTION 
Internet video streaming and set-top devices like WebTV [1], 
ReplayTV [2], and TiVo [3] are defining a new platform for 
interactive video playback.  With videos being in digital form, 
either stored on local hard disks or streamed from the Internet, 
many sophisticated TV-viewing experiences can be supported.  It 
has become possible to “pause” a live broadcast program while 
you answer the doorbell and continue from where you left off.  
The fact that video is stored on the hard disk (instead of tape) 
also allows for instant random access to the program content.  
This allows for rich browsing behavior by users based on 
additional meta-data associated with the video.  For example, 
indices into TV news programs can permit users to focus only on 
subset of stories that are of interest to them, thus saving time.  
Similarly, meta-data indicating action-segments in a sports 

program can permit viewers to skip the less interesting portions 
of the game. 

The value of such meta-data was explored in a recent study by Li 
et. al., where viewers were provided with metadata (manually 
generated) and instant random access for a wide variety of video 
content [4].  The ability to browse video was found to be highly 
valuable by users, especially for news, sports, and informational 
videos (e.g., technical presentations, travel documentaries). In 
addition to saving time watching content, the users appreciated 
the feeling of being in control of what they watched. 

We also note a key difference between two models on how 
highlights may be made available to viewers.  In the traditional 
TV broadcast model, e.g., CNN sports highlights, when they 
show a 1-minute highlight of a game, the user has no choice to 
watch anything more or less.  In the new model, with set-top 
boxes and hard disks, we can make the assumption that the whole 
2-hour game is recorded on the local hard disk, and the highlights 
act only as a guide.  If the user does not like a particular selected 
highlight they can simply skip it with a push of a button on their 
remote control, and similarly at the push of a button they can 
watch more details.  This new model allows for greater chance of 
adoption of automatic techniques for highlight extraction, as 
errors of automation can be compensated by the end-user. 

In this paper we explore techniques to automatically generate 
highlights for sports programs.  In particular, we focus on the 
game of baseball as our initial target---it is a very popular sport, 
the whole game is quite long, often there are several games being 
played on the same day so viewer can’t watch all of them, and the 
exciting portions per game are few.  We focus on detecting 
highlights using audio-track features alone without relying on 
expensive-to-compute video-track features.  This way highlight 
detection can even be done on the local set-top box (our target 
delivery vehicle) using the limited compute power available.  

Our focus on audio-only forces us to address the challenge of 
dealing with an extremely complex audio track.  The track 
consists of announcer speech, mixed with crowd noise, mixed 
with remote traffic and music noises, and automatic gain control 
changing audio levels.  To combat this, we develop robust speech 
endpoint detection techniques in noisy environment and we 
successfully apply support vector machines to excited speech 
classification. We use a combination of generic sports features 
and baseball-specific features to obtain our results, but believe 
that many other sports offer the same opportunity.  For example, 
we use bat-and-ball impact detection to adjust likelihood of a 
highlight segment, and the same technology can also be used for 
other sports like golf. We present details on relative performance 
of various learning algorithms, and a probabilistic framework for 
combining multiple sources of information. The probabilistic 
framework allows us to avoid ad hoc heuristics and loss of 
information at intermediate stages of the algorithm due to 
premature thresholding. 

 

 
 
 
 



We present results comparing output of our algorithms against 
human-selected highlights for a diverse collection of baseball 
games.  The training for our system was done on a half-hour 
segment of one game, but we test against several totally distinct 
games covering over 7 hours of play.  The results are very 
encouraging: when our algorithm is asked to generate the same 
number of highlight segments as marked by human subject, on 
average, 75% of these are the same as that marked by the human. 

The rest of the paper is organized as follows.  Section 2 discusses 
related work from both technology perspectives and video 
domains.  In Section 3, we first examine the advantages and 
disadvantages of the information sources that we can utilize to 
perform baseball highlights extraction and then discuss the audio 
features that will be used in this paper. In Section 4, we present 
both the algorithm flowchart and the algorithm details that 
include noisy environment speech endpoint detection, excited 
speech classification, baseball hit detection and probabilistic 
fusion.  Section 5 presents detailed descriptions of the test set, 
evaluation framework, experimental results, and observations.  
Conclusions and future work are presented in Section 6. 

2. RELATED WORK 
Video-content segmentation and highlight extraction has been an 
active research area in the past few years [5].  More recently, 
leading international standard organizations (e.g., MPEG of 
ISO/IEC [6] and ATVEF [7]) have also started working actively 
on frameworks for organizing and storing such metadata.  Below 
we focus primarily on technologies used and the types of content 
addressed by such systems and organizations. 

There are primarily three sources of information used by most 
video segmentation and highlight detection systems. These are 
analysis of video track, analysis of audio track, and use of close-
caption information accompanying some of the programs.  
Within each of these, the features used to segment the video may 
be of a general nature (e.g., shot boundaries) or quite domain 
specific (e.g., knowledge of fact that a news channel segments 
stories by a triple hash mark “###” in the close caption channel).  

When analyzing the video track, a first step is to segment raw 
video into “shots”.  Many shot boundary detection techniques 
have been developed during the past decade.  These include 
pixel-based, histogram-based, feature-based and compressed-
domain techniques [8]. However, video shots have low semantic 
content. To address real-world need, researchers have developed 
techniques to parse videos at a higher semantic level.  In [5], 
Zhang et. al. present techniques to categorize news video into 
anchorperson shots and news shots and further construct a 
higher-level video structure based on news items.  In [9], Wactlar 
et. al. use face detection to select the frame to present to the user 
as representative of each shot.  In [10], McGee and Dimitrova 
developed a technique to automatically pick out TV commercials 
from the rest of the programs based on shot change rate, 
occurrence of black frames and occurrence of text regions. This 
allows users to quickly skip through commercials. In [11], Yeung 
et. al. developed scene-transition graphs to illustrate the scene 
flow of movies.  As stated in the introduction, in this paper we do 
not focus on video-track features for computational reasons.  

The audio-track contains immense amounts of useful information 
and it normally has closer link to semantic event than the video 
information.  Some interesting early work was done by Arons 
[12] in trying to aggressively speed-up informational talks.  He 

noticed that relative-pitch increases for people when they are 
emphasizing points.  In his Speech Skimmer system, he used that 
for prioritizing regions within a talk.  He et al [13] further built 
upon Aron’s work and constructed presentation summaries based 
on pitch analysis, knowledge of slide transitions in the 
presentation, and information about previous users’ access 
patterns.  The study showed that the automatically generated 
summaries were of considerable value to the talk viewers.  As we 
will discuss later, we use pitch as one component for emphasis 
detection in this paper too. 

Use of close-caption information (e.g., Informedia project [9]) is 
a special case of speech track analysis; ideally if speech-to-text 
conversion were perfect, one would not have to rely on close-
caption information.  However, we are far from ideal today, and 
close caption text is a powerful source to classify video segments 
for indexing and searching.  For this paper, as is the case in 
practice, we assume close caption information is not available for 
baseball games. 

As one moves away from relatively clean speech environments 
(e.g., news, talks), analysis of audio-track can become trickier.  
For example, in sports videos, there are several sources of 
audio—the announcer, the crowd, noises such as horns — are all 
mixed together.  These sound sources need to be separated, if 
their features are to be used in analysis and segmentation of 
video.  The CueVideo system from IBM [15] presents techniques 
to separate speech and music in mixed-audio environments. They 
use a combination of energy, zero-crossing rate, and analysis of 
harmonics.  In [16], Zhang and Kuo developed a heuristic-based 
approach to classifying audio signals into silence, speech, music, 
song, and mixtures of the above. While both systems achieve 
good accuracy, the selection of many hard-coded thresholds 
prevents them from being used in a more complicated audio 
environment such as baseball games. As we discuss in later 
sections, the audio channel in TV baseball programs is very 
noisy, the sound sources more diverse, and we want to detect 
special features like baseball bat-and-ball impact that have not 
been addressed earlier.  

Looking at related work in the sports domain, we see that 
relatively little work has been done on sports video as compared 
to news video.  This is partly due to the fact that the analysis is 
more difficult for sports, for example, due to lack of regular 
structure in sports video (in contrast, news often has structured 
format: anchor person  clip from the field  back to anchor 
person) and more complex audio.  In some early work, Gong et. 
al. [17] targeted at parsing TV soccer programs.  By detecting 
and tracking soccer court, ball, players, and motion vectors, they 
were able to distinguish nine different positions of the play (e.g. 
midfield, top-right corner of the court, etc.).  While Gong et al 
focused on video track analysis, Chang et. al.[18] primarily used 
audio analysis as an alternative tool for sports parsing.  Their 
goal was to detect football touchdowns.  A standard template 
matching of filter bank energies was used to spot the key words 
“touchdown” or “fumble”.  Silence ratio was then used to detect 
“cheers”, with the assumption that little silence is in cheering 
while much more are in reporter chat. Vision-based line-mark 
and goal-posts detection were used to verify the results obtained 
from audio analysis.  Our work reported here is similar in spirit 
though different in detail. 

3. INFORMATION SOURCES 



As discussed in previous section, the two primary sources of 
information are video-track and audio-track.  Video/visual 
information captures the play from various camera distances and 
angles.  One can possibly analyze the video track to extract 
generic features such as: high-motion scene or low-motion scene; 
camera pan, zoom, tilt actions; shot boundaries.  Alternatively, as 
done by Gong et. al. and Chang et. al for soccer and football, we 
can detect sport-specific features.  For baseball, one can imagine 
detecting situations such as: player at bat, the pitcher curling-up 
to pitch the ball, player sliding into a base, player racing to catch 
a ball.  Given our goal of determining exciting segments, we 
believe sport-specific features are more likely to be helpful than 
the generic features.  For example, interesting action usually 
happens right after the ball is pitched, so detecting the curled-up 
pitching motion sequences can be very helpful, especially when 
coupled with the audio-track analysis. 

The technology to do such video-analysis while challenging 
seems within reach.  However, we do not use video analysis in 
this paper.  We had two reasons.  First, visual information 
processing is compute intensive, and we wanted to target set-top 
box class of machines.  For example, to compute the dense 
optical flow field of a 320x240 frame, it needs a few seconds on a 
high-end PC even using the hierarchical Gaussian pyramid [19].  
Second, we wanted to see how well we can do with audio 
information only.  As we discuss below, we thought we could 
substitute for some of the visual cues with cheaper-to-compute 
audio cues.  For example, instead of detecting beginning of a play 
with a curled-up pitcher visual sequence, we decided to explore if 
we could locate it by detecting bat-and-ball impact points from 
the audio track. 

There are four major sources mixed in: 1) announcers’ speech, 2) 
audience ambient speech noise, 3) game-specific sounds (e.g. 
baseball hits), and 4) other background noise (e.g. vehicle 
horning, audience clapping, environmental sounds, etc.).  A good 
announcer’s speech has tremendous amount of information, both 
in terms of actual words spoken (if speech-to-text were done) and 
in terms of prosodic features (e.g., excitement transformed into 
energy, pitch, and word-rate changes).  The audience ambient 
noise can also be very useful, as audience viscerally react to 
exciting situations.  However, in practice this turns out to be an 
unreliable source, because automatic gain control (AGC) affects 
the amount of audience noise picked up by the microphones. It 
varies quite a bit depending on whether the announcer is 
speaking or not.  Game specific sounds, such as bat-and-ball 
impact sound, can be a very useful indicator of the game 
development.  However, AGC and the far distance from the 
microphones make detecting them challenging. Finally, vehicle 
horning and other environmental sounds happen arbitrarily in the 
game.  They therefore provide almost no useful, if not negative, 
information to our task. 

Based on the above analysis, in this paper, we will use 
announcers’ speech and game specific sound (e.g., baseball hits) 
as the major information sources and fuse them intelligently to 
solve our problem at hand.  We make the following assumptions 
in extracting highlights from TV broadcasting baseball programs: 

1. Exciting segments are highly correlated with announcers’ 
excited speech; 

2. Most of the exciting segments in baseball games occur right 
after a baseball pitch and hit.  

Under the above two assumptions, the challenges we face are: 
develop effective and robust techniques to detect excited 
announcers’ speech and baseball hits from the mixed and very 
noisy audio signal, and intelligently fuse them to produce final 
exciting segments of baseball programs. Before we going into full 
details of the proposed approach in Section 4, we first examine 
various audio features that will be used in this paper. 

3.1. Audio Features Used 
3.1.1 Energy Related Features 
The simplest feature in this category is the short-time energy, i.e., 
the average waveform amplitude defined over a specific time 
window. 

When we want to model signal’s energy characteristics more 
accurately, we can use sub-band short-time energies. Considering 
the perceptual property of human ears, we can divide the entire 
frequency spectrum into four sub-bands, each of which consists 
of the same number of critical bands that represent cochlear 
filters in the human auditory model [14].  These four sub-bands 
are 0-630hz, 630-1720hz, 1720-4400hz, and 4400hz and above. 
Let’s refer them as E1, E2, E3, and E4.  Because human speech’s 
energy resides mostly in the middle two sub-bands, let’s further 
define E23 = E2 + E3. 

3.1.2 Phoneme-level Features  
The division of the sub-bands based on human auditory system is 
not unique.  Another widely used sub-band division is the Mel-
scale sub-bands [20].  For each tone with an actual frequency,  f,  
measured in Hz, a subjective pitch is measure on a so called 
“Mel-scale”.  As a reference point, the pitch of a 1 kHz tone, 40 
dB above the perceptual hearing threshold, is defined as 1000 
Mels.  In plain words, Mel-scale is a gradually warped linear 
spectrum, with coarser resolution at high frequencies. The Mel-
frequency sub-band energy is defined accordingly. For automatic 
speech recognition, many phoneme-level features have been 
developed. Mel-frequency Cepstral coefficients (MFCC) is one 
of them [20]. It is the cosine transform of the Mel-scale filter 
bank energy defined above.  MFCC and its first derivative 
capture fine details of speech phonemes and have been a very 
successful feature in speech recognition and speaker 
identification.  

3.1.3 Information Complexity Features 
There are quite a few features that are designed for characterizing 
the information complexity of audio signals, including bandwidth 
and entropy. Because of entropy’s wide use and success in 
information theory applications, in this paper we will concentrate 
on entropy (Etr). For an N-point FFT of the audio signal s(t),  let 
S(n) be the nth frequency’s component. Entropy is defined as: 
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3.1.4 Prosodic Features 
The waveform of voiced human speech is a quasi-periodic signal.  
The period in the signal is called the pitch (Pch) of the speech. It 
has been widely used in human speech emotion analysis and 
synthesis [21].  Independent of the waveform shape, this period 
can be shortened or enlarged as a result of the speaker’s emotion 



and excitement level. There are many approaches to pitch 
estimation, including auto-regressive model and average 
magnitude difference function [16], etc.  The pitch tracker we use 
in this paper is based on the maximum a posteriori (MAP) 
approach [22].  It creates a time-pitch energy distribution based 
on predictable energy that improves on the normalized cross-
correlation and is one of best pitch estimation algorithms 
available. 

3.1.5 Summary 
We have discussed various audio features in this section.  They 
are designed for solving different problems. Specifically, we will 
use E23, Etr, and MFCC for human speech endpoint detection.  
E23 to E4 are used to build a temporal template to detect baseball 
hits.  Statistics based on E23 and Pch are used to model excited 
human speech.  

4. PROPOSED APPROACH 
In this section we will first give an algorithm overview and then 
discuss each sub-systems in full detail. 

4.1 Algorithm Overview 
As stated in Section 3, we base our algorithm for highlight 
detection on a model of baseball where we assume: (i) exciting 
segments are highly correlated with announcers’ excited speech; 
and (ii) most exciting segments in baseball occur right after a 
baseball pitch and hit.  As a result, we need to develop 
techniques to reliably detect excited human speech and baseball 
hits, and then fuse them intelligently to generate the final 
highlights segments. The following is the flowchart of the 
algorithm. 

 

Figure 1. Algorithm Flowchart 

The top-left block is the sub-system for excited speech 
classification, including the pre-processing stage of noisy 
environment speech endpoint detection.  The top-right block is 
the sub-system for baseball hits detection.  The bottom block is 
the sub-system for probabilistic fusion. 

1. Noisy Environment Speech Endpoint Detection: In 
conventional speech endpoint detection, the background 
noise level is relatively low. An energy-based approach can 

achieve reasonably good results.  Unfortunately, in TV 
baseball programs, the noise presence can be as strong as the 
speech signal itself, and we need to explore more 
sophisticated audio features to distinguish speech from other 
audio signals. 

2. Classifying Excited Speech Using Learning Machines: Once 
speech segments are detected, the energy and pitch statistics 
are computed for each speech segment. These statistics are 
then used to train various learning machines, including pure 
parametric machines (e.g., Gaussian fitting), pure non-
parametric machines (e.g., K nearest neighbors), and semi-
parametric machines (e.g., support vector machines).  After 
the machines are trained they are capable of classifying 
excited human speech for other baseball games. 

3. Detecting Baseball Hits Using Directional Templates: 
Excited announcers’ speech does not correlated 100% with 
the baseball game highlights.  We should resort to additional 
cues to support the evidence that we obtained from excited 
speech detection. Sports-specific events, e.g., baseball hits, 
provide such additional support. Based on the characteristics 
of baseball hits’ sub-band energy features, we develop a 
directional template matching approach for detecting 
baseball hits. 

4. Probabilistic Fusion: The outputs from Steps 2 and 3 are the 
probabilities if an audio sequence contains excited human 
speech and contains a baseball hit, respectively.  Each one 
of two probabilities alone does not provide enough 
confidence in extracting true exciting highlights. However, 
when integrated appropriately, they will produce stronger 
correlations to the true exciting highlights. We will develop 
and compare various approaches to fuse the outputs from 
Steps 2 and 3. 

Based on the nature of each processing steps, different audio 
signal resolutions are used.  All of the original audio features are 
extracted at the resolution of 10 msec (referred as frames). The 
frame-resolution E23 and E4 are used in directional template 
matching to detect baseball hit candidates. In speech endpoint 
detection, human speech seldom is less than half a second. We 
therefore use 0.5 sec resolution (referred as windows).  The 
statistics of Pch and E23 are extracted from each window to 
conduct excited speech recognition.  

One thing worth emphasizing is that the whole proposed 
approach is established on a probabilistic framework. Unlike 
some of the existing work that uses heuristics to set hard 
thresholds, we try to avoid thresholding during the intermediate 
stages. In the thresholding approaches, early misclassifications 
cannot be remedied at later stages. The probabilistic framework 
approach will, on the other hand, produce probability values at 
each intermediate stage not a 0/1 decision.  This probabilistic 
formulation of the problem allows us to avoid ad hoc procedures 
and solve the problem in a principled way. 

5. Noisy Environment Speech Detection 
Most of the traditional speech endpoint detection techniques 
make the assumption that the speech is recorded in a quiet room 
environment.  In that case, E23 alone can produce reasonably 
good results.  At a baseball stadium, however, human speech is 
almost always mixed with other background noise, including 
machinery noise, car horns, background conversations, etc [20]. 



In this case, E23’s distinguishing power drops significantly, 
because microphone’s AGC amplifies the background noise level 
when the announcers are not talking.  The energy level of non-
speech signal can therefore be as strong as that of speech. 

In a recent work by Huang and Yang [23], they proposed to use a 
hybrid feature (product of energy E23 and entropy Etr) to perform 
noisy car environment speech endpoint detection.  Based on our 
experiments, even though this approach is effective in car 
environment, its performance drops significantly in baseball 
stadium environment that has much more varieties of background 
interferences. 

Inspired by the success of MFCC in automatic speech 
recognition, and the observation that speech exhibits high 
variations in MFCC values, we propose to use first derivatives of 
MFCC (delta MFCC) and E23 as the audio features.  They are 
complimentary in filtering out non-speech signals: energy E23 
helps to filter out low energy but high variance background 
interference (e.g., low volume car horns) and delta MFCC helps 
to filter out low variance but high energy noise (e.g., audience 
ambient noise when AGC produces large values). In Section 5, 
we compare the performance of the above three approaches: 
energy only, energy and entropy, and energy and delta MFCC. 

5.1   Classifying Excited Human Speech 
A good announcer’s speech has tremendous amount of 
information, both in terms of actual words spoken (if speech-to-
text were done) and in terms of prosodic features (e.g., 
excitement transformed into energy and pitch). As speech-to-text 
is not reliable in noisy environment, in this paper we concentrate 
on the prosodic features. Excited announcers’ speech has good 
correlations with the exciting baseball game segments.  Previous 
study has shown that excited speech has both raised pitch and 
increased amount of energy [21]. The features we use in this 
paper are therefore statistics of pitch Pch and energy E23 
extracted from each 0.5 sec speech windows.  Specifically, we 
use six features: maximum pitch, average pitch, pitch dynamic 
range, maximum energy, average energy, and energy dynamic 
range of a given speech window. 

The problem of classification can be formulated as follows.  Let 
C1 and C2 be the two classes to be classified (e.g., excited speech 
vs. non-excited speech).  Let X be the observations of the features 
(e.g., the six audio features described above).  Let P(Ci | X), i = 
1, 2, be the posterior probability of a data being in class Ci given 
the observation X.  Bayes decision theory tells us that classifying 
data to the class whose posterior probability is the highest 
minimizes the probability of error [24]:  
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How to reliably estimate P(Ci|X) is the job for learning machines.  
We next explore three different approaches. 

5.1.1 Parametric Machines 
Bayes rule tells us that P(Ci | X) can be computed as a product of 
the prior probability and the conditional class density, and then 
normalized by the data density: 
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As p(X) is a constant for all the classes and does not contribute to 
the decision rule, we only need to estimate P(Ci) and p(X|Ci). 

Priors P(Ci) can easily be estimated from labeled training data 
(e.g., excited speech and non-excited speech). There are many 
ways to estimate the conditional class density p(X|Ci). The 
simplest approach is the parametric approach.  This approach 
represents the underlying probability density as a specific 
functional form with a number of adjustable parameters [24].  
The parameters can be optimally adjusted to best fit the training 
data. The most widely used functional form is Gaussian (Normal) 
distribution N(µ,σ), because of its simple form and many nice 
analytical properties. The two parameters (mean µ and standard 
deviation σ) can be optimally adjusted by using the maximum 
likelihood estimation (MLE): 
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where n is the number of training samples. 
5.1.2 Non-Parametric Machines 
Even though easy to implement, parametric machines are too 
restrictive in data modeling and sometimes result in poor 
classification results.  For example, the pre-assumed function 
seldom matches the true underlying distribution function and it 
can only model unimodal distributions [24].  Non-parametric 
machines were proposed to overcome this difficulty. They do not 
pre-assume any functional forms, but instead depend on the data 
itself.  There are non-parametric machines that can estimate the 
posterior probability P(Ci | X) directly.  K nearest neighbor is 
such a technique. 

Let V be the volume around observation X and V covers K 
labeled samples. Let Ki be the number of samples in class Ci. 
Then the posterior probability can be estimated as [24]: 
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This estimation matches our intuition very well: the probability 
that a data sample belongs to class Ci is the fraction of samples in 
the volume labeled as class Ci. 

5.1.3 Semi-Parametric Machines 
Pure parametric machines are easy to train and fast to adapt to 
new training samples, but too restrictive. Non-parametric 
machines, on the other hand, are much more general but take 
more time to compute.  To combine the advantages and avoid the 
disadvantages of the above two approaches, semi-parametric 
machines have been proposed [25]. These new set of machines 
include the Gaussian mixture models, neural networks and 
support vector machines (SVM).  Because of its recognized 
success in pattern classification [26], we will focus on SVM in 
this paper. 

Let R be the actual risk (test error) and Re be the empirical risk 
(training error).  For η, where 0< η<1, with probability 1 – η, the 
following bound holds [26]: 
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where n is the number of training samples and h is a non-negative 
integer called the Vapnik-Chervonenkis (VC) dimension of a 
learning machine [26]. R (test error) represents a learning 
machine’s ability to generalize to unseen data, after it is trained.  



In any classification task, we want R to be minimized. It is not 
always true that R will be minimized when Re is minimized.  The 
second term on the right-hand side determines the “mismatch” 
between training and testing situations, and it increases as the VC 
dimension increases. VC dimension characterizes the “capacity” 
of a learning machine.  If the capacity is too low, the machine 
cannot learn and results in a high Re (thus high R).  On the other 
hand, if the capacity is too high, even though Re can be 
arbitrarily small, the machine can be “over fit” and results in a 
high value of the second term (thus high R).  The remarkable 
characteristic of SVM is that it can automatically find the 
required “capacity” to learn the training samples without being 
over trained. In another word, SVM learns in a principled way.  
SVM has found successes in many applications including face 
detection, hand writing recognition, and text categorization [26]. 

Standard SVM does not generate the posterior probability 
directly. In [27], Platt developed a new approach to first train a 
SVM and then to train an additional sigmoid function to map the 
SVM outputs into posterior probabilities.  Because of its 
effectiveness, we adopted this method in our system: 
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where A and B are the parameters of the sigmoid function. 

In Section 5, we give detailed comparisons between the above 
three learning machines’ performance. 

5.1.4 Post Processing 
In real world, excited speeches never appear in just one window 
(0.5 sec).  Instead, they appear in a much longer unit.  
Experimentally, we find a segment (5 sec) is the minimum length 
required by a coherent excited speech.  Since each window 
contributes equally to a segment, we use the average posterior 
probability of the windows in the segment as the posterior 
probability for the segment P(ES): 
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where C1 represents the excited speech class, and M is the 
number of  windows in a segment. 

5.2 Baseball Hit Detection 
Even though excited announcers’ speech has good correlations 
with exciting baseball game segments, it is not sufficient or 
reliable to base the judgment solely on the excited speech. For 
example, the pitch tracker may perform poorly in noisy speech 
environment. More importantly, announcers’ speech can become 
excited due to other reasons that are totally irrelevant with the 
development of the game (e.g., a joke from their partners or a 
balloon passing the stadium). If we were to use excited speech 
only, there would have been many false alarms. 

In most of the sports, there exist sports-specific events.  For 
example, player gatherings indicate the start of new attacks in 
football, and baseball hits manifest possible exciting segments a 
few seconds later in the game.  These sports-specific events can 
help reduce the amount of false alarms.  In this section, we will 
describe a directional template matching approach to detecting 
baseball hits. 

In the audio signal spectrograms, when we examine a baseball hit 
in isolation, it is extremely difficult to distinguish it from a strong 

speech fricative or a stop.  However, when we look at it in the 
context of its surrounding signals, while the task is still difficult 
we have some hope: fricatives or stops normally are followed by 
vowels that exhibit high energy in E23 but low energy in E4. To 
capture this temporal context, we build a baseball-hit template 
consisting of 25 frames, with the hit peak at the 8th frame. In this 
template, using only the absolute values of E23 and E4 is not 
sufficient.  To capture the shape of the energy curves over time, 
we further use the ratio of E23 and E4 normalized by E23(8): 
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where i = 1, …, 25. 

The four 25-element templates are constructed based on labeled 
training data.  Figure 3 shows the four templates (E23 ,ER23 ,E4 
and ER4 in that order) built on 55 training samples. 

 
Figure 2. Baseball hit’s template 

We next discuss how we compute the probability that a data 
sequence (25 frames) contains a baseball hit. Let D be the 

Mahalanobis distance of a data sequence X
ρ

 from the template 

T
ρ

: 
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where both X
ρ

 and  T
ρ

are vectors of 4 x 25 = 100 elements, and 

Σ is the covariance matrix of T
ρ

.  To simplify computation, we 
restrict Σ to be a diagonal matrix. The distance D can be 
converted to a probability value as follows [28]: 
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where C is a suitable constant. 
The above conventional (un-directional) template matching 
technique does not incorporate domain knowledge into the 
computation of D effectively.  For example, domain knowledge 
(Figure 2) tells us that E23(8) should exhibit high value while 
other E23(i)’s exhibit low values. But in the un-directional 
template matching, an over-mismatch data point of E23(8) is 
treated the same as an under-mismatch data point of E23(8). In 
reality, however, an over-mismatch should not only not to be 
punished, but also be encouraged. The direction from which the 
data point is approaching the template is important.  We thus 
propose a directional template matching approach: 
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where I is a diagonal indicator matrix.  Its elements can be of 
various values to reflect the domain knowledge. For example, 
I(8,8) takes a negative value when E23(8) is an over-mismatch to 
reduce the distance D but a positive value for an under-mismatch 
to increase the distance D. This new formulation makes template 
matching much more flexible to incorporate domain knowledge 
into the distance computation. Specifically, in this paper, when 
E23(i)’s are over-matching, I = diag[1, …, 1, -1, 1, …, 1], where 
the –1 is at location 8. When E23(i)’s are under-matching the 
templates, I = diag[-1, …, -1, 1, -1, …, -1], where the 1 is at 
location 8.  

5.3 Probabilistic Fusion 
In the previous two sections we have developed techniques to 
compute the probability that a segment is an excited speech 
segment (P(ES)) and the probability that a frame contains a 
baseball hit (P(HT)).  The two assumptions we made in Section 3 
tell us that if a segment has high P(ES) and it occurs right after a 
high P(HT) frame, it is very likely to be a true exciting segment. 
From the training data, we find that a hit can occur upto 5 sec 
ahead of the excited speech segment. In all the following 
discussions, we search a hit frame within the 5 sec interval of the 
excited speech segment. We next explore two techniques to fuse 
P(ES) and P(HT) into the final probability if a segment is an 
exciting segment (P(E)). 

5.3.1 Weighted Fusion 
In this approach, both P(ES) and P(HT) directly contribute to 
P(E), with appropriate weights: 

)()()( HTPWESPWEP HTES +=  

where WES and WHT are the weights that sum up to 1.0.  They can 
both be estimated from the training data, and we use values of 
0.83 and 0.17. 
5.3.2 Conditional Fusion 
In this approach, we try to capture the intuition that the key value 
of a detected hit P(HT) is not in directly adding to the probability 
that a segment is exciting P(E). Instead it contributes indirectly to 
P(E) by adjusting the by adjusting the confidence level of the 
P(ES) estimation (e.g., that the excited speech probability is not 
high due to mislabeling a car horn as speech): 
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where P(CF) is the probability that how much confidence we 
have in P(ES) estimation, and )(1)( HTPTHP −=  is the 

probability that there is no hit. P(CF|HT) represents the 
probability that we are confident that P(ES) is accurate given 
there is a baseball hit. Similarly, )|( THCFP represents the 

probability that we are confident that P(ES) is accurate given 
there is no baseball hit. Both conditional probabilities P(CF|HT) 
and )|( THCFP can be estimated from the training data and we 

obtain values 1.0 and 0.3.  

5.4 Final Presentation 
Starting at the beginning of the algorithm, various probability 
values are computed and flow to the end of the algorithm. This 
probabilistic framework allows us to avoid information loss due 
to intermediate-step hard thresholding and can solve the problem 
in a principled way. At the end of the algorithm flow chart, there 
is only a single probability value (P(E)) associated with each 
segment.  

When presenting an exciting segment to the end user, 
overlapping and close-by segments are merged into a single 
segment. In addition, because we already know the most likely 
baseball hit locations, each segment starts a few seconds before 
the hit.  Figure 3 is a typical sequence of an exciting segment. 

Depending on users’ interest level and/or time available to view 
the game, the users can specify an interest threshold. This is the 
only threshold that a user needs to specify. Based on this 
threshold, the algorithm generates a summary of suitable 
duration.   

Of course, the algorithm may generate false positives and 
negatives.  Lowering the threshold will minimize false negatives 
(reduce missing exciting segments) though it may increase false 
positives (include non-exciting segments). Our belief is that if 
these are few, then the benefits of automation will far exceed the 
costs.  In WebTV/TiVo/ReplayTV environments it is particularly 
easy for the end-user to skip incorrectly identified false positives 
due to the instant seek capability. 

6. EXPERIMENTAL RESULTS 
In this section, we will give detailed reports on our experiments 
to evaluate various proposed approaches.  We will describe the 
data set used, evaluation framework, experimental results and 
observations. 

6.1 Data Set 
In most of the existing systems, only limited amount of tests have 
been conducted (e.g. less than 1 hr video in [15], 45 min in [18], 

 
      (a)    (b)             (c)    (d) 

Figure 3. A typical presentation of an exciting segment: It starts with the pitcher throwing the ball (a).  Then the hitter tries to hit the ball (b).  If 
it is a good hit, then the hitter is running (c). The final part (d) is the audience cheering for the good play. 



and 30 min in [17]). To validate the effectiveness and robustness 
of the proposed approach, we have collected baseball game 
videos from various sources (see Table 1). In total we have seven 
hours of baseball games consisting of eight giga bytes of data. 
They come from different sources, digitized at different studios, 
sampled at different frequencies and amplitude, and reported by 
different announcers. The first half (35 min) of Clip A is used as 
the training data.  The second half of Clip A is used as a clip-
dependent test case.  Clip B has many similar conditions as Clip 
A and is used as a similar-clip test case. Clips C and D differ 
significantly from Clip A, and are used as clip-independent test 
cases.  To further stress test, we included Clips E and F.  Clip E 

is sampled at a lower frequency and may lose some higher 
frequency information, as needed in the algorithm.  Clip F’s 
audio level was over amplified (clipped), i.e., 20% over the limit 
of maximum allowable level.  These two tapes represent the 
stress test cases. A summary of the six clips is given in Table 1. 

6.2 Evaluation Framework 
We wanted to compare our automatically generated highlight 
segments to the ones marked by humans. A human subject (not 
working on the project) was asked to watch the baseball games 
A-F and mark the exciting segments. Given the certain amount of 
subjectivity in what is exciting, we would have ideally liked 
multiple people to do such markings. The results are quite 
interesting nonetheless. 

There are two methods we use to evaluate our results.  The first 
called “segment-overlap method” is as follows.  We vary the 
threshold until the number of segments selected by our algorithm 
is the same as that selected by the human.  We then ask the 
question how many of these are the same as those selected by the 
human.  The larger the overlap, clearly the algorithm is 
performing better.  We can also do sensitivity analysis by letting 
our algorithm select fewer or more segments than that selected by 
the human. 

Table 1. Data set. The clips cover about 7 hours of video, with 4 
different announcers.  The Energy Level is given as compared to 
maximum allowable level (in percentage). 

Clip Length Announcer Samp. Fr. Energy Lev 

A 1:10:05 A 16 KHz 50 
B 1:05:34 A 16 KHz 55 
C 1:01:54 B 16 KHz 80 
D 0:41:14 C 16 KHz 80 
E 1:58:26 A 11 KHz 30 
F 1:06:19 D 16 KHz 120 
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Figure 4.  Overall  performance curves for clips A through F, in raster scan order.  Y-axis shows number of exciting segments identified correctly by 
the algorithm.  X-axis indicates excess-time factor, i.e., duration of algorithmically selected segments divided by duration of human selected segments. For each 
graph, the left light-gray curves shows ideal performance, corresponding to choices made by human.  Right dark curve shows our algorithm’s performance assuming 
E+MFCC for speech selection, SVM for classifying exciting speech segments, and using conditional fusion for including baseball hit data.   The vertical dash line 
indicates the time duration of algorithmically selected segments when threshold was set so that the number of segments selected was same as that generated by 
human.  The overall graph was plotted with a slightly lower threshold, with number of generated segments being 1.5 times human segments.  This allows us to see if 
we capture some more of the human selected segments if we lower the threshold. 

 



The second method, called “excess-time method”, is used to deal 
with a possible pitfall of the first method.  For example, if the 
segments determined by an algorithm are very long (e.g., each is 
2 minutes long) then obviously the probability of covering 
human-selected segments (each is typically about 10 seconds) 
would be higher, and first metric would indicate good results.  
However, that would not be as good as an algorithm that more 
tightly identifying the exciting segments.  So in this method we 
plot the number of correctly generated segments as a function of 
T/T0 (e.g., Figure 4). The numerator T corresponds to the 
duration of the algorithmically selected segments (ordered based 
on decreasing P(E) values), and the denominator T0 corresponds 
to the total duration of the human-selected segments. For 
example, a point on this graph could indicate that to get coverage 
of 5 of the 7 human-selected segments, we have to spend 1.4 
times as long watching the video as duration of human-selected 
segments. These excess-time curves illustrate how the algorithm 
performs when more and more segments are added to the final 
presentation. 

6.3 Overall Performance 
We begin by comparing the performance of the best of our 
algorithms with the ground truth as marked by the human.  The 
best overall algorithm combines energy plus delta MFCC for 
speech-endpoint detection, SVM for learning excited speech 
segments, and conditional fusion for including baseball hit 
information. Table 2 summarizes the performance when the 
threshold of our algorithm was set to pick the same number of 
segments as selected by human. 

Table 2. Overall performance. Second row indicates # of segments 
selected by human.  Third row indicates # of correct segments identified 
by algorithm, when asked to pick same number of segments as human. 

Clip A B C D E F Total 

# human 7 7 15 13 13 11 66 
# algorithm 5 5 8 10 12 9 49 

Comparing the performance in Table 2, we see that algorithm 
identifies 49 out of 66 segments correctly (~75%).  This is quite 
remarkable, if we consider that some of the exciting segments 
identified by the human start falling into the gray area, where 
there may have been others segments just as exciting to another 
human.  The performance for clip C is poorest of all the clips (8 
out of 15 correct), and this is due to pitch tracking reasons.  We 
discuss this aspect in greater detail in Section 5.8 after discussing 
rest of results. 

Figure 4 shows the overall performance using excess-time plots 
for all the clips (shown in raster-scan order). We also show the 
“ideal” curves corresponding to the ground truth, i.e., human 
selected segments. These represent the least amount of time to 
achieve the highest “correctness”. The vertical dashed lines in 
each graph indicates the time duration of algorithmically selected 
segments when threshold was set so that the number of segments 
selected was same as that generated by human (the correctness at 
this threshold is 49 out of 66 as shown in Table 2). The location 
of these dashed lines indicate how much more time a viewer need 
to spend to view the same number of segments as the human 
marked ones.  For example, if the vertical dashed line’s location 
is 1.3, it says a viewer will spend 30% more time.  The closer the 
line is to 1.0, the better the algorithm’s performance. As can be 

seen in the figure, except for Clip F, all the clips’ vertical lines 
are within 2.0, with average of ~1.5. 

This is a strong result indicating that the algorithm is not 
achieving its correctness by marking up excessively long duration 
segments.  In fact, even this factor of 1.5 is partly due to the fact 
that the human in our case was particularly conservative in 
identifying the exciting segments.  For example, he did not 
include the pitcher pitching the baseball and player hitting the 
baseball in his highlighted segments; he only included the action 
after that.  Our instructions to the human were not so precise, and 
we did not want to change his markings after the fact. 

The overall graphs in Figure 4 were plotted with a slightly lower 
threshold, with number of generated segments being 1.5 times 
human segments.  Thus if human identifies 10 segments, we 
adjusted the algorithm to generate 15 segments.  These portions 
of the curves cover the region on the right of the vertical line, and 
also provide useful information.  If the curves continue upwards, 
it means it is still beneficial to include more segments into the 
presentation at the cost of increased viewing time.  On the other 
hand, if the curves become flat after the vertical lines, it is almost 
of no advantage to include more segments.  The curves in Figure 
4 show that it is still beneficial to include more segments (other 
than for Clips D and F).  By increasing our excess-time factor 
slightly, we can achieve correctness of 57 out of 66 segments 
(~86%).  

After establishing the overall performance of the proposed 
approach, we next examine various algorithms in greater detail 
along three orthogonal dimensions: speech endpoint detection, 
excited speech classification, and probabilistic fusion.  

6.4 Speech-Endpoint Detection 
We had presented three speech-segment endpoint detection 
algorithms in Section 4.2: energy only (E), energy and entropy 
(E+Etr), and energy and delta MFCC (E+MFCC).  We now 
explore the impact of the speech-endpoint detection algorithm on 
the overall end results.  For this comparison, we fix the other 
control conditions: the learning algorithm is fixed to SVM (it was 
the best as we will show later), and the hit-detection and fusion 
algorithm to “conditional fusion”.  

The relative performance is summarized in Table 3.  It is clear 
that overall E+MFCC does substantially better (49 out of 66 
correct) than the other two approaches, while E+Etr does better 
than E alone (40 vs. 30 out of 66).  E+MFCC does best for each 
of the six individual clips (A-F) too, while there are some 
performance reversals between E and E+Etr (clips C and F). 

Table 3. Performance of various speech-endpoint detection 
algorithms. Second row indicates # of segments selected by human.  
Subsequent rows indicate correct segments identified by algorithm, when 
asked to pick the same number of segments as human. 

Clip A B C D E F Total 

# human 7 7 15 13 13 11 66 
E+MFCC 5 5 8 10 12 9 49 

E+Etr 5 5 7 9 9 5 40 
E 4 4 8 5 2 7 30 

6.5 Excited Speech Classification 
In Section 4.3, we discussed three approaches to excited speech 
classification: Gaussian fitting (GAU), K nearest neighbors 



(KNN), and support vector machines (SVM). Table 3 summarizes 
the impact of the different learning machines on the overall end 
results. For this comparison, we fix the other control conditions: 
we use E+MFCC as the speech endpoint detection algorithm and 
use conditional fusion as the fusion algorithm. 

While SVM performs the best in the three learning machines as 
we expected, the gain is not significant. After analyzing the data, 
we found one major reason accounting for this was the following.  
The input to all the learning machines was the pitch and energy 
statistics of each speech window(Section 4.3). Our proposed 
E+MFCC did a very good job in separating other audio signals 
from human speech.  Once this is done, excited speech 
classification becomes less difficult and less sophisticated 
learning paradigms (e.g., GAU and KNN) can achieve reasonable 
good results.  One thing worth pointing out is that, even though 
KNN achieves almost the same accuracy as SVM, it is the slowest 
of the three learning machines. 

Table 4. Performance of the three learning machines. Second 
row indicates # of segments selected by human.  Subsequent rows 
indicate correct segments identified by algorithm, when asked to pick the 
same number of segments as human. 

Clip A B C D E F Total 

# human 7 7 15 13 13 11 66 
SVM 5 5 8 10 12 9 49 
GAU 5 5 8 9 12 7 46 
KNN 5 5 8 9 12 9 48 

6.6 Baseball Hits Detection 
The output of the directional template matching (Section 4.4) is 
the probability if a frame contains a baseball hit.  Even though 
there is no need to set any threshold at this intermediate stage, we 
can set a threshold (TH) for evaluation purpose.  We vary TH 
from 0.05 to 0.5 and Table 5 summarizes the baseball hits 
detection performance for Clip D.  (We did not do other Clips 
due to resource involved in marking the ground truth.) There are 
58 true baseball hits in this clip. Considering many baseball hits 
are corrupted by background noise and even completely 
overlapping with announcers’ speech, the proposed approach’s 
performance is very encouraging.  For example, at TH = 0.20, it 
detects 47 (81%) of all the true hits and only introduced 8 (less 
than 14%) of false positives.  Among the undetected hits, for 
some the audio was too weak to be detected even by human, and 
in ground truth we simply assumed there was a hit based on 
video analysis. 

Table 5. Baseball hits detection 

TH .05 .10 .15 .20 .30 .40 .50 

Correct 53 50 47 47 41 32 23 
False Alarms 23 13 9 8 2 2 1 

6.7 Probabilistic Fusion 
In Section 4.5, we proposed two methods to fuse P(ES) and 
P(HT): weighted fusion and conditional fusion. Table 6 
summarizes the performance between conditional fusion, 
weighted fusion, and no fusion – just use P(ES) and discard 
P(HT). For this comparison, we fix the other control conditions: 
we use E+MFCC as the speech endpoint detection algorithm and 
use SVM as the learning machine for classifying excited speech. 

We find no significant difference between the two fusion 
algorithms.  When we looked at the details, we found that 
conditional fusion was giving more weight to hits than weighted 
fusion.  As a result, when conditional fusion was used, if hits 
were correctly identified the algorithm did a better job. If, 
however, an actual hit was not detected, the algorithm often 
resulted in a mis-classification.  On the balance, the results 
looked the same as weighted fusion, that gave an overall low 
level of importance to presence of hits. 

Table 6 shows, however, that both conditional fusion and 
weighted fusion outperform no-fusion by about 8% (column 
Total in Table 6). This demonstrates that sports-specific features 
(e.g., baseball hits) provide useful cues to calibrate the accuracy 
of generic features (e.g. pitch estimation) and thus improve the 
overall system performance.  We believe such features can also 
be valuable for sports like Golf, which have an impact involved 
and share the property with baseball of considerable slack time 
between exciting plays. 

Table 6. Performance of the three learning machines. Second 
row indicates # of segments selected by human.  Subsequent rows 
indicate correct segments identified by algorithm, when asked to pick the 
same number of segments as human. 

Clip A B C D E F Total 

# human 7 7 15 13 13 11 66 
Cond fusion 5 5 8 10 12 9 49 
Wei.  fusion 5 6 8 9 12 9 49 
No fusion 5 5 8 7 12 8 45 

 

6.8 Discussion 
When we examine the highlights marked by the human subject, 
there are different exciting levels associated with the highlights.  
Some of highlights are clearly very exciting and most people will 
agree that they are exciting segments.  Others, however, are 
subtle: they are exciting to some degree and from a certain 
perspective. After our experiments, we discussed with the human 
subject for some of the segments he marked but the algorithm 
missed, and some segments the algorithm detected but he did not 
select. He agreed that those segments belong to the “gray area”, 
where even humans may have different answers.  On the other 
hand, our algorithm almost never misses the really exciting 
segments.  Considering the “gray area” effects, 49 out of 66 
(75%) accuracy is a very encouraging result.  In fact, if we ignore 
clip C for which the accuracy is the worst (we discuss clip C 
below), the overall accuracy increases to 41 out of 51 (~80%).  
We also have the possibility of increasing coverage by asking the 
algorithm to generate a larger # of segments than that generated 
by the human.  While this would increase number of false 
positives, this might work well in practice, because given the 
instant-seek functionality provided by WebTV/TiVo/Replay 
boxes, it is very easy for end-user to skip incorrectly identified 
exciting segments. 

The algorithm missed quite a few highlights in Clip C.  When we 
carefully traced the reason, we found the pitch tracker was giving 
wrong estimations.  The pitch tracker [22] we used in this paper 
is already one of the best in speech research community.  
However, like other pitch trackers, it is designed and tuned to 
clean speech pitch estimation.  Even though it performs well in 
those situations, it failed when the background noise’s level is 
almost comparable to that of human speech.  



Baseball hits detection is still far from satisfactory.  This sports-
specific event is very useful in providing additional cues for 
highlights detection.  If we had more accurate hit detection, the 
performance of conditional fusion and weighted fusion would 
have more significantly outperformed that of no-fusion.  Even 
with current hit detection accuracy, conditional fusion and 
weighted fusion already exhibit clear performance advantage 
(around 8%) over no-fusion. 

7. CONCLUDING REMARKS 
In this paper, we have explored solutions to the challenging task 
of extracting baseball game highlights on set-top devices. Our 
task is highly constrained by the computing power and noisy 
audio data.  We presented effective techniques to speech 
detection in noisy environment.  We show that energy level plus 
delta MFCC performs best, and it improves the final performance 
considerably over alternatives. We discussed the relative strength 
of three types of learning machines and successfully applied 
SVM in excited speech classification.  To incorporate domain 
knowledge more flexibly, we developed a directional template 
matching approach to baseball hits detection and achieved 
encouraging results. Finally, we developed probabilistic 
framework that intelligently integrates P(ES) and P(HT).  The 
proposed probabilistic framework does not lose useful 
information at intermediate stages and allows us to solve the 
problem in a principled way. 

We tested various methods over a diverse collection of six 
baseball games covering 7 hours of game time. The results are 
very encouraging.  When our algorithm is asked to generate the 
same number of highlight segments as marked by human subject, 
on average, 75% of these are the same as that marked by the 
human.  When asked to generate 1.5 times the number of 
segments, the overlap increases to 86%.  At the same time, the 
total duration of the algorithmically generated segments is not 
significantly more than that of human segments. 

Future work plans include real use of the proposed system, for 
example, to create highlights for the hundreds of games that are 
broadcast during a baseball season.  An implementation on a PC 
acting as a TiVo/WebTV/Replay box will let us explore how end-
users react to the availability of such highlight metadata.  We also 
plan to explore use of visual features to improve the system 
performance. Given the computing power constraints, visual 
features will be used only after audio features have filtered clear-
cut cases.  Use of visual features is also possible when highlights 
are detected on a server and then communicated to the set-top 
box over the Internet. 
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