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Abstract. We propose a Modified Fourier Descriptor and a new dis-
tance metric for describing and comparing closed planar curves. Our
method accounts for the effects of spatial discretization of shapes, an
issue seldom mentioned, much less addressed in the literature.

The motivating application is shape matching in a content based image
retrieval system. The application requires a compact and reliable shape
representation, and a feature distance measure which can be computed
in real time. Experimental results suggest that our method is a feasible
solution for on-line shape comparisons in such a system.

1 Introduction

Content based retrieval (CBR) has gained considerable attention recently[1-5].
Color and texture features are explored in [1-5]. This paper will focus on shape
matching. We propose that a useful shape representation should satisfy the fol-
lowing four conditions:

1. Robustness to Transformation — the representation must be invariant to
translation, rotation, and scaling of shapes, as well as the starting point
used in defining the boundary sequence.

2. Robustness to Noise — the representation must be robust to spatial discretiza-
tion noise.

3. Feature extraction Efficiency — feature vectors should be computed effi-
ciently.

4. Feature matching Efficiency — since matching is done on-line, the distance
metric must require a very small computational cost.

We propose the Modified Fourier Descriptor (MFD), which satisfies the four
conditions above. The Fourier Descriptor (FD) method is the most closely related
work, so we give a brief review of it in section 2. We discuss the proposed MFD in
section 3. Comparisons between MFD and existing methods are given in section
4. Experimental results and conclusions are in sections 4 and 5, respectively.

List of symbols:
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— Ny: number of vertices of a polygon;

Npg: number of boundary points of a shape;
— N¢: number of FD coefficients used in shape reconstruction;

V;: the ith vertex of a polygon;

— Ngense: number of “dense” samples used in resampling in the MFD;
— Nuyniy: number of uniformly spaced samples used in MFD method;
— «, 3,7: planar curves (shape boundaries).

2 Fourier Descriptors

There are two commonly known FD’s, described in [7] and [6], which we denote
as “FD1” and “FD2”, respectively. FD1 has low efficiency in reconstructing the
shape, so we discuss FD2 only. A point moving along the boundary 7 generates
the complex function u(l) = x(l) + jy(l). FD2 is defined as:
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Let {a,} and {b,} denote the FD’s of two curves a and [, respectively, and

assume only N¢ harmonics are used; the distance metric is

and bk =

Nc

d(a,ﬂ) = Z |an - bn|2 (2)
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To account for the effects of scale (s), rotation (¢), and starting point (p),
we must minimize the distance metric
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over the parameters (s, ¢,p). This is a computationally expensive optimization
problem and makes FD2 impractical for shape matching in a real-time CBR
system, especially when the image database is large.

3 Proposed Method — Modified Fourier Descriptors

The reason why the feature-matching computation for FD1 and FD2 is expensive
is that the length between adjacent vertices lj, is not uniform. If the starting point
changes, the whole boundary sequence {b;} will change.

We overcome this drawback by defining the boundary as a 4-connected
boundary, which has uniform length. Let z(n) = z(n) + jy(n), n =0,...,Ng— 1,
be the boundary sequence. The MFD is defined as the Discrete Fourier Trans-
form of z(n).
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where £ =0,..., Ng — 1.

Next, we examine the properties of MFD and propose a distance metric which
is both reliable and easy to compute. Let z’(n) be a boundary sequence obtained
from z(n): z'(n) is z(n) translated by z;, rotated by ¢, and scaled by «, with
the starting point shifted by (. Explicitly, z'(n) is related to z(n) by

Z'(n) = az(n —1)e? (5)

The corresponding MFD of 2/(n) is
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Setting m =n — [, we get
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The distance metrics for magnitude (D,,) and phase (D,) are defined as
D,,, = Var[ratio|, D, = Var[shift] 9)
where M(k B(k) — ' (k
ratio(k) = M,((k)); shift(k) = W; (10)
¢:90—96; k= —Nc,...,Nc,k;éO. (].].)
o and 6, are the orientations of the major axes of the two shapes, defined as
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where cm;; is the (i, 7)™ central moment of the shape.
The overall similarity distance is defined as
D =wy, D, +wpDy (13)

where w,, and w, are weighting constants. Empirically, we find that w,, =1
and w, = 0.1 will give good results to most of the images.

4 Comparisons with the Existing Methods

4.1 Computational complexity

Tables 1 and 2 show the computation operation counts for MFD, FD1, and
FD2 in feature extraction and feature matching, respectively.

We can see that although MFD requires a little bit more computation during
feature extraction, it is much faster during feature matching. This is because the
MFD distance metric is intrinsically invariant to translation, rotation, scale, and
starting point. This is a very important advantage for the MFD since feature
extraction is done off-line while matching is done on-line.



Table 1. Operation counts for feature extraction
FD1 | FD2 MFD

Adds|O(Ny)|O(NE)|O(Ng log, Ni)
Mults O(Nv) O(Nv) O(NB 10g2 NB)

Table 2. Operation counts for feature matching
FD1 | FD2 | MFD
Adds|O(Nc?®)|Huge*|O(Ne)
Mults|O(Nc?)|Huge*|O(Nc)

Huge*: beyond comparison since it requires finding all zeros
of a trigonometric polynomial of degree N..

4.2 Robustness: Practice and Theory

Regardless of the different computational costs, FD1, FD2 and MFD are all
valid shape representations, at least theoretically. But to be of practical use, a
representation must be tested using the following procedure:

1. Use a camera to take two images of the same physical object, but at different
scales, rotations, and translations.

2. Segment the two input images to obtain two shape boundaries, with arbitrary
starting point.

3. Compare the features obtained from the each image.
4. If the match is good, conclude that the method is valid.

Note that the segmentation occurs after the transformation. This is the ac-
tual situation when comparing shapes from two different images. If we use this
testing procedure, none of the existing methods give good results, including our
proposed MFD method. This is because the boundaries used in these meth-
ods are sensitive to discretization noise. The discretization noise in many cases
changes the boundary enough such that the Fourier coefficients become signifi-
cantly different. Both FD1 and FD2 suffer from this problem.

MFD also suffers from discretization noise. A simple example illustrates this
point (see fig. 1). We discretize the triangle using two different orientations.
Note that the upper figure has redundant information (staircase effect) in edge
¢ while the lower figure has redundant information in edges a and b. The Fourier
transform magnitudes, as well as ratio(k) (defined in section 3) are shown in fig.
2. Note that the plot of ratio(k) shows a large variance, even though the FFT
coefficients were obtained from the same object.

We want to solve this problem of spatial discretization while keeping the
invariance properties of the MFD; we propose the following procedure:

1. Compute the FFT of the boundary;

2. Use the first (2N + 1) FFT terms to form a dense but possibly non-uniformly
sampled set of points on the boundary:
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3. Use interpolation to trace the dense samples and form samples zunif(n), n
=0, ..., Nyniy which are uniformly spaced in terms of arc length, estimated
from zgense(n);

4. Compute the FFT of zunif(n) to obtain MFD coefficients Zynif(k), k =

—Ne, ..., Ne
b
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Fig. 1. Effect of spatial discretization on the chain code.

(a) (b) (c)
Fig. 2. (a) FFT magnitude of upper triangle; (b) FFT magnitude of lower triangle; (c)
ratio(k) vs. k.

T
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Fig. 3. (a) Original image; (b) Extracted boundary; (c) Low frequency reconstruction;
(d) Uniform re-sampling.

5 Experimental Results

We applied the MFD to our multimedia database prototype, Multimedia Analy-
sis and Retrieval System (MARS). However, to be consistent with other methods,
we used several letters of the alphabet as our test set. Images were created by
printing out the letters {m, n, u, h, 1, t, f} on a laser printer and digitizing the
printouts using a scanner. Letters were printed using 256 pt. Helvetica font.



5.1 Sensitivity to choice of parameters

The letters “n” and “f” are used in the following experiments. “n vs. n” denotes
the distance between “n” and a rotated version of “n”, where the rotation angle
is 27 degrees. “n vs. f” denotes the distance between an upright “n” and an
upright “f”.

1. Sensitivity to N¢

Table 3 shows Distance vs. N¢, where we can see that the MFD is very
robust to N¢. We have a wide range to choose N¢ from — it can range from 5 to
40 without significantly affecting the matching results for the images we used.

Table 3. Distance vs. N¢
N¢ 10 | 15 | 20 | 25 | 30 | 35

n vs. n[0.095|0.090(0.059]0.051{0.051|0.051
n vs. £]1.984(1.806/1.930|1.713|1.907|1.705

2. Sensitivity to Ngense
Ngense is defined as

boundary length
Nstep

Ndense = (15)
where Ny is the sampling interval. The finer the interval, the larger the number
of dense samples. From Table 4 we see that the distance is almost constant for
a wide range of Nyep.

Table 4. Distance vs. Ngte
Nstep | 2 4 6 8 10 12 14
n vs. n|0.059{0.059{0.059{0.059{0.059|0.059]0.060
n vs. £{1.912(1.912(1.913(1.912(1.931(1.932(1.932

3. Sensitivity to Nunis
Nuniy is defined as
Nunis = (2N + Dmulti (16)

where multi makes Nyn;¢ a multiple of the number of total frequencies used.
multi should be at least 1, which corresponds the Nyquist frequency. (see Table
5).

Table 5. Distance vs. mults
multi | 1 2 3 4 5 6
n vs. n|0.075[{0.059|0.060{0.059{0.059(0.060
n vs. £{1.705/1.912{1.911{1.911|1.911|1.911

5.2 Discriminatory ability

Tables 6-8 show the MFD distances between the shapes of each letter from the
original set, rotated set (27 degrees), and scaled set (210%).



As expected, “n” and “u” match quite closely, since they are only rotated
versions of each other. “h” matches “n” and “u” better than the other letters.
We see that discretization (after rotation and scaling) introduces some noise and
thus the distances between the same letters are not exactly zero (Tables 7, 8)
as is the case in Table 6. But the results indicate that the MFD deals with the
discretization effects fairly well. Distances between different letters are always
much larger (10 to 100 times) than those between the same letter.

Table 6. Distances between letters — original set.
m n u h 1 t f
0.000|1.802{1.809|1.625(0.893|1.802(1.512
1.802|0.000(0.075|1.439|1.026|1.729|1.907
1.809(0.075(0.000{1.483|0.991|1.747|1.852
1.625|1.439|1.483|0.000|1.081|1.583|1.557
0.893|1.026|0.991|1.081{0.000|1.109|1.077
1.802{1.729|1.747|1.583(1.109|0.000(1.260
1.512|1.907|1.852|1.557|1.077|1.260|0.000
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Table 7. Distances between original and rotated letters.
m n u h 1 t f
0.085|1.815|1.887|1.550(0.889|1.605|1.545
1.795(0.079(0.133|1.448/1.035|1.860{1.736
1.805(0.139(0.102{1.492{0.999|1.905|1.735
1.619|1.405|1.543(0.068|1.094|1.493|1.603
0.837|1.154|1.034|1.077|0.016|1.109(1.070
1.808|1.757|1.760(1.586{1.112|0.058|1.262
1.512]1.911]1.923|1.571{1.085|1.244|0.040

|| = e | BB

Table 8. Distances between original and scaled letters.
m n u h 1 t f
0.025(1.873|1.848(2.081|1.762|1.674|1.602
1.797|0.023|0.083(1.441|2.342|1.847|1.808
1.804|0.080{0.023|1.487|2.374|1.685|1.806
1.621|1.324|1.333(0.022|2.017|1.582{1.601
0.895(1.028/0.991{1.080|0.012|1.112{1.088
1.810|1.730{1.745|1.582{1.382|0.025(1.267
1.518|1.911|1.884|1.574(1.232|0.891|0.034

||~ e| = |E

5.3 Robustness to transformation
— Translation
No discretization noise involved. Zero error.

— Rotation
We plot the distance vs. rotation angle in fig. ??a. The upper curve is the
distance between “f” and rotated versions of “n”. The lower curve is the dis-

tance between “n” and its rotated version. The rotation step is five degrees.

— Scale
We plot distance vs. scale factor in fig. ??b. The upper curve is the distance
between “f” and scaled versions of “n” (from 30% to 210%, with a step size



of 30%). The lower curve is the distance between “n” and scaled versions of
“n”. The magnitude difference is also about a factor of 20, indicating that
the MFD is scale invariant.

— Starting point

No discretization noise involved. Zero error.

(a) (b)

Fig.4. “n vs. n” and “n vs. {7 for various (a) rotation angles; (b) scale factors
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Conclusions

We presented a new method of shape representation and its distance metric. We
compared it with existing FD methods in terms of both computational cost and
practical robustness. The main features of our method are:

1. The method is in variant to translation, rotation, scale, and starting point.

2. The method takes into account spatial discretization.

3. The computational cost for feature extraction is low, and for feature match-
ing the cost is extremely low, making the method suitable for real-time
multi-user CBR systems.

4. The representation is able to describe complex shapes while remaining rel-
atively compact, reducing the disk space and memory required in the CBR
system.
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