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Abstract

Combining learning with vision techniques in interactive
image retrieval has been an active research topic during the
past few years. However, existing learning techniques either
are based on heuristics or fail to analyze the working con-
ditions. Furthermore, there is almost no in depth study on
how to effectively learn from the users when there are multi-
ple visual features in the retrieval system. To address these
limitations, in this paper, we present a vigorous optimiza-
tion formulation of the learning process and solve the prob-
lem in a principled way. By using Lagrange multipliers, we
have derived explicit solutions, which are both optimal and
fast to compute. Extensive comparisons against state-of-
the-art techniques have been performed. Experiments were
carried out on a large-size heterogeneous image collection
consisting of 17,000 images. Retrieval performance was
tested under a wide range of conditions. Various evaluation
criteria, including precision-recall curve and rank measure,
have demonstrated the effectiveness and robustness of the
proposed technique.

1. Introduction

Early research in image retrieval has been focused on
low-level vision alone [1, 2]. Unfortunately, after years of
research, the retrieval performance is still far from users’
expectations. Past efforts have made it clear that learning
techniques need to be integrated into the retrieval system.
Learning is a general concept. It can be from statistic mod-
els. It can also be from humans who are already in the vision
system. This paper focuses on the latter learning paradigm.

One of the interactive learning techniques is relevance
feedback, originally developed in the information retrieval
community [3]. In recent years, it has been brought to vi-
sual image retrieval [4, 5, 6]. During retrieval, the users
interact with the system and rate the ”relevance” of the im-
ages retrieved by the system according to their true infor-
mation needs. Based on the feedback, the system dynami-
cally learns and updates its query structure that best captures

users’ concepts.

There are two important components to be learned in the
retrieval systems. One is an appropriate transformation that
maps the original visual feature space into a space that bet-
ter models user desired high-level concepts. As a special
case, this transformation can be as simple as re-weighting
different axes in the original feature space. The other im-
portant component is the ”ideal” query in the user’s mind.
For example, a user may not initially have the query image
at hand or the ideal query may evolve during the retrieval
process.

By converting the retrieval process into a learning pro-
cess of the above two components, we can avoid ad hoc so-
lutions and can approach this problem in a principled way.
There exist various techniques in learning the above two
components. MARS [4] proposed two independent learn-
ing techniques for the two components based on intuitive
heuristics. MindReader [7] developed a more vigorous for-
mulation of the problem but failed to analyze the working
conditions. To address these limitations, we will propose an
optimization-based learning technique in this paper that not
only works in all conditions but also has principled explicit
solutions.

The rest of the paper is organized as follows. In Section
2, we introduce important concepts and notations used in
the paper. In Section 3, we review related work in this re-
search field and discuss their strength and weakness. Efforts
of resolving the limitations in the existing techniques lead
to the global optimization approach proposed in Section 4.
We will give detailed descriptions of the problem formula-
tion, derivation of explicit optimal solutions, and computa-
tion complexity analysis. Evaluation of an image retrieval
system’s performance has been a weak spot in the past. In
this paper, we have performed extensive experiments over a
large heterogeneous image collection consisting of 17,000
real-world images. Various retrieval performance criteria,
such as precision-recall curve and rank measure, have been
used to validate the proposed algorithm. These experimen-
tal results are reported in Section 5. Discussions, conclu-
sions and future work are given in Section 6.



2. Concepts and Notations
In this section, we describe important concepts and their

notations that will be used throughout the paper. Let � be
the number of features we are studying and let � be the
total number of images in the database. We use ���� �
������ � � � � ���� � � � ������

� to denote the ��� feature vector
of the��� image, where�� is the length of the feature vec-
tor �. For example, for a six-element color moment feature
vector�� � �.

Let ��� � ����� � � � � ���� � � � ����
� be a query vector in fea-

ture �’s feature space. To compute the distance 	�� between
the two points ��� and ����, we need to define a distance
metric. The Norm-2 (Euclidean) metric is chosen because
of its nice properties in quadratic optimization. There are
several variants of the Euclidean distance: plain Euclidean,
weighted Euclidean and generalized Euclidean.
� Plain Euclidean

	�� � ���� � �����
� ���� � ����� (1)

� Weighted Euclidean

	�� � ���� � �����
� �� ���� � ����� (2)

where �� is a diagonal matrix and its diagonal ele-
ments model the different importance of ���� .

� Generalized Euclidean

	�� � ���� � �����
� 
� ���� � ����� (3)

where
� is a real symmetric full matrix.

Plain Euclidean cannot model any transformation be-
tween different feature spaces. Weighted Euclidean can
reweight the original feature space. Generalized Euclidean
can both map the original space to a new space and reweight
the transformed space.

[Theorem 1] For a real symmetric matrix 
 �, it can be
decomposed into the following form [8]:


� � � �
� �� �� (4)

where �� is an orthonormal matrix consisting 
�’s eigen
vectors and �� is a diagonal matrix whose diagonal ele-
ments are the eigen values of 
�.

Based on the theorem, the generalized Euclidean dis-
tance can be re-written as:

	�� � ���� � �����
� 
� ���� � �����

� ���� � �����
� � �

� �� �� ���� � �����

� ��� ���� � ������
� �� ��� ���� � ������

The above derivation says that the old feature space is first
transformed into a new feature space by � � and then the new
feature space is re-weighted by ��.

So far we have only discussed how to compute image
distances based on an individual feature. As for the overall
distance �� based on multiple features, it can be computed

in two ways. One way is to not differentiate the difference
between a feature element and a feature and stack all the
feature elements (from all the individual features) into a big
overall feature vector and then use Equations 1 - 3 to com-
pute ��. This approach was used in most of the existing
systems. Because this model has no hierarchy, we refer it as
the ”flat model” in this paper. Another way is to construct a
hierarchical model, where the overall distance �� is defined
as:

�� � 
�	��� (5)

where 
��� is a function that combines the individual dis-
tances 	�� to form the overall distance ��. We will refer
this model as the ”hierarchical model”. This model is a fun-
damental part of the proposed approach. We will show in
Section 5 how this model significantly outperforms the flat
model.

As stated in Section 1, there are two components that
need to be learned by relevance feedback. One is the fea-
ture space transformation and the other is the optimal query
vector. Following this section’s notations, the former in-
cludes the learning of 
� and 
��� and the latter is to learn
���.

3. Related Work
Most of the existing techniques have used the flat model

and ignored 
���. Even for learning the flat model (
 � and
��� only), there is still much room for improvements.

3.1. The MARS approach
The MARS system was among the first in the field that

introduced relevance feedback into image retrieval [4]. It
proposed two independent techniques for learning 
 � and
���. For the former, the MARS system assumes
� will take
a diagonal form, thus using the weighted Euclidean metric.
The heuristics for learning the weights (diagonal elements)
were based on the following observation. If a particular fea-
ture element captures a user’s query concept, that element’s
values ��� will be consistent among all the positive exam-
ples given by the user. The standard deviation of all the
���’s will therefore be small. The inverse of the standard
deviation thus furnishes a good estimate of the weight for
feature element ���.

���� �
�

���
(6)

where ���� is the ���� element of matrix 
� and ��� is the
standard deviation of the sequence of � ��’s.

The MARS system also proposed a technique for learn-
ing the query vectors. The learned query vector should
move towards the positive examples and away from nega-
tive examples:

�� �� � ���� � ��
�

���

�
��	�

�

������ ��
�

�
 �

�
��	�

�

�����

� � �� � � � � �



where ������ �, and � are suitable constants [3]; ��� and
�
 � are the numbers of images in the relevant set � �

� and
non-relevant set ��


 ; and ���� is the ��� training sample in
the sets ��

� and ��


 .
Even though working reasonably well, the MARS tech-

niques were based on ad hoc heuristics and did not have
a solid theoretical foundation. Since its appearance, many
improved versions have been proposed. One of the most
elegant approaches is MindReader.

3.2. The MindReader approach

The MindReader system was developed by Ishikawa et
al. [7]. This system integrated the two independent learning
processes in MARS into a single algorithm and proposed
a well-founded theoretical framework for the learning pro-
cess.

Instead of being a diagonal matrix as in the MARS sys-
tem, 
� is a full matrix in this algorithm to model the gen-
eralized Euclidean distance. By minimizing the distances
between the query vector and all the positive fedback ex-
amples, MindReader system obtained the following optimal
solutions to ��� and 
� [7]:

���
��

�
�� � ���

��� ��

(7)


 �

� � ����� ���
�

��  ��
� (8)

where � is the number of positive examples and �� is the
degree of relevance for image � given by the user. � � is the
example matrix obtained by stacking the� training vectors
(����) into a matrix. It is therefore a (� ���) matrix. The
term  � is the weighted (�����) covariance matrix of��.
That is,

 ��� �

�

��� �� ���� � ��� ���� � ����


��� ��
!� " � �� � � � ���

A major difference between the MindReader approach
(Equation 8) and the MARS approach (Equation 6) is that

� is a full matrix in the former but a diagonal matrix in
the latter. The advantages and disadvantages of these two
methods will be demonstrated by experiments in Section 5.

The MindReader approach avoided ad hoc heuristics and
developed a mathematical framework for learning 
 � and
���. However, it failed to analyze the working conditions. In
fact, even though elegant in theory, it faces many difficulties
in reality.

3.2.1 Discussions
In order to obtain 
� (Equation (8)), we need to compute
the inverse of the covariance matrix  �. It is clear that, if
� # ��, then � is not invertible and we cannot obtain
�.
In MindReader, the authors proposed a solution to solve this
by using a pseudo-inverse defined below [7].

The singular value decomposition (SVD) of  � is

 � � $ � %� (9)

where � is a diagonal matrix: ���	�&�� � � � � &�� � � � � &��
�.

Those &’s are either positive or zero. Suppose there are '
nonzero &’s, the pseudo-inverse of  � is defined as

 �
� � $ �� %�

�� � ���	�
�

&�
� � � � �

�

&

� 	� � � � � 	��

where � denotes the pseudo-inverse of a matrix. The ap-
proximation solution to 
 �

� is then [7]


 �

� � �


�
���

&��
�

�  �
� (10)

Even though, in theory, we can get around the singular
problem by using the above procedure, in reality this so-
lution does not give satisfactory results. This is especially
true when� is far less than��. Remember, we need to use
�� � �� � �� numbers from the training samples to esti-
mate �� ������

� parameters in matrix  �. In MindReader,
the authors used a �� � 
 example to show the perfor-
mance of the algorithm. However, in real image retrieval
systems, feature vectors’ dimensions are much higher. For
example, in HSV color histograms, the feature vector’s di-
mension can be as high as �� � � � � � 

� [2]. During
retrieval, in most situations, the condition� ( �� will not
be satisfied and this algorithm performs poorly (see Section
5).

4. The Proposed Approach
As reviewed above, there are three major difficulties in

the existing systems: ad hoc heuristics, limited working
conditions, and most importantly utilizing the flat model to
compute the overall distance. To address these difficulties,
in this section, we will propose an optimization-based learn-
ing algorithm that not only works in all conditions, but also
has explicit optimal solutions for multiple visual features
simultaneously.

4.1. Problem formulation

We model each individual feature’s similarity as the gen-
eralized Euclidean distance because of its powerfulness and
model the overall similarity as linear combinations of each
individual feature’s similarity because of its simplicity. That
is, 
� takes the form of a matrix and 
��� takes the form
of a vector �) � �)�� � � � � )�� � � � � )� �. The above choices
are after careful considerations which, for clarity, will be
presented in Section 6.

Let � be the number of retrieved relevant images (train-
ing samples). Let �� be the degree of relevance for training
sample � given by the user. The overall distance between a
training sample and a query is defined as:



�� � �)��	� (11)

�	� � �	��� � � � � 	��� � � � � 	�� �
� (12)

	�� � ����� � ����
�
������ � ���� (13)

The above distance definition leads to the following op-
timization problem:

��� * � �� �
� �� (14)

�� � ���� � � � � ��� � � � � �
 �� (15)

�� � �)��	� (16)

�	� � �	��� � � � � 	��� � � � � 	�� �
� (17)

	�� � ����� � ����
�
������ � ���� (18)

"���

��
���

�

)�
� � (19)

����
�� � � (20)

� � �� � � � � � (21)

� � �� � � � � � (22)

It is easy to see that if there are no constraints for �) and
 �,
this optimization problem will reduce to a trivial solution
of all zeros. We therefore enforce Equations (19) and (20)
as constraints for scaling purposes. This problem formula-
tion is a general framework which can include both MARS
and MindReader. If we would disregard the overall distance
(��) and only concentrate on each individual distance (	��),
a diagonal matrix of 
� would reduce this formulation to
the MARS algorithm and a full matrix of 
� would reduce
this formulation to the MindReader approach.

The above objective function says that optimality will be
achieved only if both the transformations (�) and 
 �) and
query vectors ��� are optimally learned. This will be accom-
plished by minimizing the distances between the ”ideal”
query and all the positive fedback examples. The degree
of relevance �� of each example is given by the user ac-
cording to his or her judgment. The objective function *
is linear in �) and 
� and quadratic in ���. We will first use
Lagrange multipliers to reduce this constrained problem to
an unconstrained one, and then de-couple the problem by
first solving ���, and then 
� and �). The following is the
unconstrained problem:

' � �� �
� ���&�

��
���

�

)�
����

��
���

&������
����� (23)

4.2. Optimal solution for ���

+'

+���
� �� �

�

�
������

���
����

� � �
���
����

� � �
���
����

�
������

� �� �
�

�
�����

�
 )� ����� � ����
� 
�

� � �

�
 )� ����� � ����
� 
�

� � �

�
 )� ���
� � ����
� 
�

�
�����

By setting the above equation to zero, we can obtain the
final solution to ���:

���
��

�
�� � ���

��� ��

(24)

where �� is the training sample matrix for feature �, ob-
tained by stacking the � training vectors (����) into a ma-
trix. It is therefore an (� � ��) matrix. Equation (24)
closely matches our intuition. That is, ���

�

� (the optimal
query vector for feature �) is nothing but the weighted aver-
age of the training samples for feature �.

4.3. Optimal solution for 
�

+'

+����
� �� �

�

�
������

�)� ����
�����

� � �

�)� ����
�����

� � �

�)� ����
�����

�
������� &� �����������
��� �

�


�
���

�� ����� � ��������� � ����

� &� �����������
����

After setting the above equation to zero, we get:


 �

� � ����� ���
�

��  ��
� (25)

where the term  � is the (�� � ��) weighted covariance
matrix of��. That is,  ��� �

�

��� ������� � ��������� �

����,
�


��� ��� !� " � �� � � � ���.
Note that in MARS, 
� is always a diagonal matrix.

This limits its ability to modeling transformations between
feature spaces. On the other hand, MindReader’s 
 � is al-
ways a full matrix. It cannot be reliably estimated when the
number of training samples (� ) is less than the length of
the feature vector (��). Unlike these two algorithms, the
proposed technique dynamically and intelligently switches
between a diagonal matrix and a full matrix, depending on
the relationship between � and ��. When � # ��, the
proposed algorithm forms a diagonal matrix to ensure re-
liable estimation; and when � ( ��, it will form a full
matrix to take full advantage of the training samples.

4.4. Optimal Solution for �)

To obtain )�� , set the partial derivative to zero. We then
have



+'

+)�
�


�
���

�� 	�� � & )
��
� � 	� �� (26)

Multiply both sides by )� and summarize over �. We
have ��

���

)� �


�
���

�� 	��� � &�

��
���

�

)�
� � 	 (27)

Since
��

���
�
��

� �, the optimal & is

&� � �

��
���

)� -� (28)

where -� �
�


��� �� 	��. This will lead to the optimal
solution for )�:

)�� �

��
���

	
-�
-�

(29)

This solution tells us, if the total distance (-�� of feature �
is small (meaning it is close to the ideal query), this feature
should receive a higher weight and vice versa.

The solutions for ��� and 
� have been partially stud-
ied in MARS and MindReader. The solution for ) �, how-
ever, has not been investigated by either system. Both
MARS and MindReader do not differentiate the difference
between feature elements and features and use a flat im-
age content model. This is not only computationally ex-
pensive, but also far less effective in retrieval performance.
For computation complexity, take MindReader as an exam-
ple. It needs .��

��
� ���

� � 
��
��

� ���
��� multiplica-

tions or divisions while the proposed algorithm only needs
.�
��

� �����
� � 
�����

��� operations. Note that the dif-
ferent locations of

��
� in the two formulae result in signifi-

cantly different computation counts.

5. Experiments, Results and Evaluations
5.1. Data set

In the experiments reported in this section, all the algo-
rithms are tested on the Corel data set. This data set meets
all the requirements to evaluate an image retrieval system.
It is large, heterogeneous and has human annotated ground
truth. This data set consists of 17,000 images, covering a
wide variety of content ranging from animals and birds to
Tibet and Czech Republic. Each category contains 100 im-
ages and these images are classified by domain profession-
als. In the experiments, images from the same category are
considered relevant. Note that the ground truth we used in
the experiments are based on high-level concepts. They are
much more difficult to achieve than visual similarities. But
they are the ultimate queries that users would like to ask.
We therefore did not count an image as a correct answer
even if it is visually similar to the query image but repre-
sents different high-level concepts.

The Corel data set was also used in other systems and
relatively high retrieval performance was reported. How-
ever, those systems only used pre-selected categories with
distinctive visual characteristics (e.g., cars vs. mountains).
In our experiments, no pre-selection is made. We believe
only in this manner can we obtain an objective evaluation
of different retrieval techniques.

5.2. Queries
Some existing systems only used pre-selected images as

the queries. It is arguable that those systems will perform
equally well on other not-selected images. Other systems
only tested on queries with unique answers. This is called
”point queries” in database research community. This type
of queries is used to model exact matches, e.g., name =
”John Smith”. On the other hand, “range queries” are used
to accomplish similarity-based matches, e.g., find all stu-
dents whose ages are between 10 and 20. It is therefore
more appropriate to use range queries to evaluate image re-
trieval systems. For example, find all the images that con-
tain animals. In our experiments reported here, there is
no pre-selected query images and all the queries are range
queries. We randomly generated 400 queries for each re-
trieval condition. The reported retrieval performance is then
the average of all the 400 queries against ground truth as an-
notated by Corel professionals. We execute queries in this
very careful manner to ensure meaningful evaluations.

5.3. Visual features
There are three features used in the system: color mo-

ments, wavelet based texture, and water-fill edge feature.
The color space we use is HSV because of its decorrelated
coordinates and its perceptual uniformity [2]. We extract
the first two moments (mean and standard deviation) from
the three color channels and therefore have a color feature
vector of length 
� 
 � �.

For wavelet based texture, the original image is fed into a
wavelet filter bank and is decomposed into 10 de-correlated
sub-bands. Each sub-band captures the characteristics of a
certain scale and orientation of the original image. For each
sub-band, we extract the standard deviation of the wavelet
coefficients and therefore have a texture feature vector of
length 10.

For water-fill edge feature vector, we first pass the orig-
inal images through an edge detector to generate their cor-
responding edge maps. We then extract eighteen (18) ele-
ments from the edge maps, including max fill time, max fork
count, etc. For a complete description of this edge feature
vector, interested readers are referred to [9].

5.4. Performance measures
Precision-recall curve is the conventional information re-

trieval (IR) performance measure [3]. Precision (�!) is de-



fined as the number of retrieved relevant objects (i.e., � )
over the number of total retrieved objects. Recall (/�) is
defined as the number of retrieved relevant objects (i.e., � )
over the total number of relevant object (in our case 99).
The performance for an ”ideal” system is to have both high
�! and /�. Unfortunately, they are conflicting entities and
cannot be at high values at the same time. Because of this,
instead of using a single value of �! and /�, a �!�/��
curve is normally used to characterize the performance of
an IR system.

Even though well suited for text-based IR, �!�/�� is
less meaningful in image retrieval systems where recall is
consistently low. More and more researchers are adopt-
ing precision-scope curve to evaluate image retrieval per-
formance [10]. Scope (01) specifies the number of images
returned to the user. For a particular scope 01, e.g., top 20
images, �!�01� can be computed as:

�!�01� �
�

01
(30)

Huang et. al. proposed another performance measure:
the rank (/�) measure [10]. The rank measure is defined as
the average rank of the retrieved relevant images. It is clear
that the smaller the rank, the better the performance. While
�!�01� only cares if a relevant image is retrieved or not,
/��01� also cares what’s the rank of that image. Caution
must be taken when using /��01�, though. If �!��01� (
�!��01� and /���01� # /���01�, it says $ is definitely
better than %, because not only $ retrieves more relevant
images than%, but also all those retrieved images are closer
to top in $ than in %. But if �!��01� ( �!��01� and
/���01� ( /���01�, no conclusion can be made based
on /�.

5.5. System description

We have constructed an image retrieval system based on
the optimization algorithm developed in Section 4. Figure
1 is its interface.

On the left are the query image and returned results (the
top-left image is the query image). For each returned image,
there is a degree-of-relevance slider. A user uses these slid-
ers to give his or her relevance feedback to the system. On
the right-hand side, there are progress controls displaying
how
� and �) dynamically change during the retrieval.

5.6. Results and observations

The proposed approach (PP) differs from the MARS
(MS) and MindReader (MR) approaches in two major ways.
First, PP models image content hierarchically. It has a two-
level feature transformation �) and 
�. The learning via
relevance feedback is also hierarchical. MS and MR, on the
other hand, do not differentiate a feature element ���� and
a feature ���� and use a flat image content model. The other

Figure 1. The interface of the system

major difference is the form of 
�. While MS uses a strict
diagonal matrix and MR uses a strict full matrix, PP adap-
tively switches between the two forms depending on the re-
lationship between � and �� (Section 4.4). In addition to
evaluate the above two differences, we will also study the
working conditions for each of the approaches.

The experiments are configured into two cases. Case one
uses only the color feature (referred as Case C) and case two
uses all the three features (referred as Case CTE). Since the
color feature has only 6 elements (�� � �), Case C simu-
lates the condition that�� is comparable to� . Note that we
can not explicitly control the value of� , the number of rel-
evant images, but we can implicitly control it by using dif-
ferent values of 01. In general, a larger 01 implies a larger
� , as illustrated in Figure 4 (� is proportional to recall /�
given the total number of relevant images is a constant of
99). Since there is only a single feature in Case C, the flat
model and the hierarchical model are the same in this case.
The performance differences between the three approaches
are coming from the form of 
 � only. This gives us a con-
crete situation to quantify the amount of contribution from
adaptive 
� switching alone(Section 4.3). Case CTE has
multiple features. For the PP approach, �� � �, �� � �	
and �� � ��. For MS and MR, �� � � � �	 � �� � 
�.
This case gives us an ideal situation to study how the hi-
erarchical content model affects retrieval performance and
under which conditions each algorithm will work.

Table 1 is for case C and Table 2 is for case CTE. The
top three rows in the tables are the results for 01 � 
	, the
middle three rows are for 01 � �		, and the bottom three
rows are for 01 � ��	. The first three columns in the two
tables are �! (in percentage) for zero, one and two itera-
tions of relevance feedback. The last three columns in the
tables are /� for zero, one and two iterations of relevance



Table 1. Case C: Comparisons when Sc = 20, 100, 180
0 rf 1 rf 2 rf 0 rf 1 rf 2rf

C(MS) 7.52 9.75 10.27 2.77 1.52 1.25
C(MR) 7.52 3.48 4.95 2.77 1.64 1.38
C(PP) 7.52 9.75 10.65 2.77 1.46 1.20

C(MS) 4.81 6.98 7.85 26.81 18.29 16.04
C(MR) 4.81 6.18 7.43 26.81 21.98 17.57
C(PP) 4.81 7.49 8.76 26.81 16.29 12.64

C(MS) 3.95 5.85 6.52 55.90 40.91 37.82
C(MR) 3.95 5.81 6.82 55.90 43.46 36.06
C(PP) 3.95 6.35 7.40 55.90 34.98 27.75

feedback. The following observations can be made based
the results of the two tables:

� PP approach performs consistently better in all condi-
tions than the other two approaches. Case C (Table 1)
demonstrates the gain of PP over MS and MR based
on the adaptive switch. By utilizing this technique, the
gain is about 5-10% increase. Note that, in this case,
not only is PP’s �! higher than those of MS and MR,
but also its rank is lower than those of MS and MR.
That is, not only PP retrieves more relevant images
than MS or MR, but also all the retrieved images are
closer to top in PP than in MS or MR. Case CTE (Ta-
ble 2) has multiple features. The gain that PP has over
MS and MR is from both adaptive switching and hier-
archical relevance feedback. The gain can be as much
as 20-40%. This significant increase demonstrates the
effectiveness of hierarchical image content modeling.

� MR approach achieves reasonable performance when
� is comparable to or larger than ��. For example, in
Table 1 when 01 � ��	, MR’s performance is better
than that of MS and is next to that of PP. This is be-
cause when there are sufficient training samples com-
pared with��, the covariance matrix � can be reliably
learned. This allows the algorithm to take advantage of
the generalized Euclidean distance measure (Equation
3). But in situations where � is smaller than ��, the
algorithm simply falls apart, as indicated in Table 2
where�� � 
�.

� Overall, MS’s performance ranks second. Its perfor-
mance is comparable to PP when there is a single fea-
ture (Case C). Where there are multiple features, be-
cause it uses a flat image content model, its perfor-
mance is significantly worse than that of PP. Further-
more, since it only uses diagonal matrix for 
 �, this
limits its ability to modeling transformations between
feature spaces. In the case 01 � ��	 in Table 1, its
performance is even worse than that of MR.

Figures 2, 3 and 4 compare the �!�/�� curves, �!�01�
curves, and /��01� curves in cases C and CTE, after two

Table 2. Case CTE: Comparisons when Sc = 20, 100, 180
0 rf 1 rf 2 rf 0 rf 1 rf 2rf

MS 7.23 10.99 12.09 3.00 1.56 1.27
MR 7.23 0.58 0.29 3.00 0.83 0.22
PP 10.18 14.18 15.85 1.71 1.20 1.10

MS 4.36 7.60 8.82 27.50 16.32 13.70
MR 4.36 1.02 2.20 27.50 24.61 14.72
PP 5.75 9.47 11.60 39.24 27.31 23.45

MS 3.53 6.00 7.02 53.83 35.88 30.81
MR 3.53 1.06 1.77 53.83 52.53 53.81
PP 4.63 7.78 9.39 125.56 83.74 67.47

feedback iterations. The solid curves, dashed curves and
dashdot curves are for PP, MS and MR, respectively. The
values of 01 range from 20 to 180 with an increment of 20.
We have the following observations based on the figures:

� �!�01� curve and �!�/�� curve depict the similar in-
formation. But as also being observed by other re-
searchers [10], for image retrieval systems where /�
is consistently low, �!�01� curve is more expressive
for comparison than �!�/�� curve.

� Figures 3 and 4 tell us if we increase 01, more relevant
images will be retrieved with the sacrifice of precision.

� Independent of the feature sets used (C vs. CTE)
and the number of images returned (01 � 
	 vs.
01 � ��	), PP is the best in all �!�/��, �!�01� and
/��01�.

� Even though elegant in theory, MR performs poorly
in most cases because its working conditions are not
satisfied. More attentions should be paid on analyzing
working conditions in future research.
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Figure 2. Precision-recall curve (a)Case C. (b)Case CTE.

6. Discussions, Conclusions and Future Work

In Section 4, we used the generalized Euclidean dis-
tance for computing 	�� and linear combination for comput-
ing ��. A natural thinking would be “how about choosing
the generalized Euclidean distance to compute �� as well?”
That is, �� � �	�

� 
 �	�, where 
 is an (� � �) matrix.
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Figure 3. Precision-scope curve (a)Case C. (b)Case CTE.
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Figure 4. Recall-scope curve (a)Case C. (b)Case CTE.

Indeed this formulation is more powerful to model non-
linear (quadratic) relations in �	�. Unfortunately, the objec-
tive function * of this formulation would then be a function
of ���� and no explicit solutions can be derived. Optimal so-
lutions for ���,
� and 
 would only be obtained iteratively.
This is extremely undesirable for image retrieval systems,
because users need to wait for minutes before the iterative
algorithm can converge. Being quadratic in 	�� and linear in
�� is the highest possible order for * to have explicit solu-
tions. The flip side of the distance measure choices for 	��
and �� is that for retrieval systems where ”response time” is
not a critical requirement, non-linear learning tools such as
neural networks [11] and support vector machines [12] are
worth exploring.

One thing worth pointing out is that the focus of this
paper is not on finding the best visual features, but rather
on exploring the best learning techniques. We are aware
of sophisticated features including localized color and seg-
mented shape [2]. We used less sophisticated features to
obtain a bottom line for other systems to compare against.
The proposed algorithm is an open framework and is ready
to incorporate other more sophisticated features.

Vision and learning techniques are just some of the tech-
niques that will make image retrieval successful. Other
techniques, including information retrieval, database man-
agement and user interface, are also of crucial importance.
However, these techniques, for example multi-dimensional
indexing for faster search [2], are beyond the scope of this

paper.
In conclusion, this paper developed a technique that

gives optimized explicit solutions to hierarchical learning in
image retrieval. Its image content model and adaptive 
 �

switching make it significantly outperform existing tech-
niques. This has been demonstrated by the extensive ex-
periments on a large heterogeneous image collection. How-
ever, there are still many dimensions to improve the cur-
rent system. Both the low-level vision part (more sophis-
ticated features [2]) and the learning part (more powerful
tools [11, 12]) should continue to advance to meet users’
true information needs.
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