
Better Proposal Distributions: Object Tracking Using Unscented Particle Filter
Yong Rui and Yunqiang Chen

Collaboration and Multimedia Systems Group, Microsoft Research

One Microsoft Way, Redmond, WA 98052-6399

yongrui@microsoft.com and chenyq@ifp.uiuc.edu

Abstract
Tracking objects involves the modeling of non-linear non-
Gaussian systems. On one hand, variants of Kalman filters are
limited by their Gaussian assumptions. On the other hand,
conventional particle filter, e.g., CONDENSATION, uses transition
prior as the proposal distribution. The transition prior does not
take into account current observation data, and many particles
can therefore be wasted in low likelihood area. To overcome
these difficulties, unscented particle filter (UPF) has recently
been proposed in the field of filtering theory. In this paper, we
introduce the UPF framework into audio and visual tracking.
The UPF uses the unscented Kalman filter to generate
sophisticated proposal distributions that seamlessly integrate
the current observation, thus greatly improving the tracking
performance. To evaluate the efficacy of the UPF framework,
we apply it in two real-world tracking applications. One is the
audio-based speaker localization, and the other is the vision-
based human tracking. The experimental results are compared
against those of the widely used CONDENSATION approach and
have demonstrated superior tracking performance.

1. Introduction
Reliable object tracking in complex audio-visual environment
is an important task. Its applications include human computer
interaction [8,9], teleconferencing [19,20], and surveillance
[12], among many others. It is also a very challenging task in
that objects’ state space representation can be highly non-linear
and the observation (e.g., audio and/or visual sensory data) is
almost always corrupted by background clutters.

Temporal Bayesian filtering (e.g., CONDENSATION [8]) is one of
the most successful object-tracking paradigms. Let x0:t and y0:t

represent the state trajectory and observation history of a
system from time 0 to time t, filtering is the process of
estimating system’s current state, based on its past and current
observations, i.e., p(xt | xt-1, y0:t). For different applications,
state xt and observation yt can represent different entities. In
visual tracking, for example, xt can be the position and
orientation of a human face, and yt can be the pixel intensities
and contours of the captured image. In audio-based tracking,
e.g., sound source localization [20], xt can be the horizontal
panning angle, and yt can be the generalized cross-correlation
function between two microphones. Regardless of the
applications, the object-tracking problems can be modeled by
the same mathematical state space representation:
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where Equation (1) is the system dynamics, Equation (2) is the
system observation, ut is the system input, mt and nt are the
process noise and observation noise, respectively. If f( ) and h( )
are linear functions and if Gaussian distribution is assumed for
xt, mt and nt , p(xt | xt-1, y0:t) has an analytical solution which is
the well-known Kalman filter [1]. Unfortunately, tracking
objects in real-world environment seldom satisfies Kalman
filter’s requirements. For example, in human tracking,
background clutter may resemble the human face, and in sound
source localization, “ghost” sound sources can create multiple
peaks in the generalized cross-correlation function. To make
the situation worse, the system dynamics and observation can
be highly non-linear. In order to deal with the non-linear and/or
non-Gaussian reality, two categories of techniques have been
developed in the past: parametric and non-parametric.

The parametric techniques are based on improvements of the
Kalman filter. By linearizing non-linear functions around the
predicted values, extended Kalman filter (EKF) is proposed to
solve non-linear system problems. It is first introduced in
control theory [1] and later on applied in visual tracking [3].
Because of its first-order approximation of Taylor series
expansion, EKF finds only limited success in tracking visual
objects [8]. In recent years, Julier and Uhlmann develop an
unscented Kalman filter (UKF) that can accurately compute
the mean and covariance of y = g(x) , where g( ) is an
arbitrary function, up to the second order (third in Gaussion
prior) of the Taylor series expansion of g( ) [10]. While
UKF is significantly better than EKF in density statistics
estimation, it still assumes a Gaussian parametric form of the
posterior, thus cannot handle multi-modal distributions.

The non-parametric techniques are based on Monte Carlo
simulations. They assume no functional form, but instead, use a
set of random samples (also called particles) to estimate the
posteriors. When the particles are properly placed, weighted,
propagated, posteriors can be estimated sequentially over time.
This technique is more popularly known as the particle filters
in recent years. The first appearance of particle filters can be
traced back to 1950s [7]. While almost dormant in the
seventies, there is a renaissance of this technique in the
early nineties [6,8,14,17], due to the massive increases in
computing power. However, most of them use the state
transition prior p(xt|xt-1) as the proposal distribution to draw
particles from [8,18]. Because the state transition does not take
into account the most recent observation yt, the particles drawn
from transition prior may have very low likelihood, and their
contributions to the posterior estimation become negligible.
This type of particle filters is prone to be distracted by



background clutters [5,11,17]. For clarity, in this paper, we
refer this type of filters as the conventional particle filters.

Inside the computer vision community, particle filters has also
enjoyed considerable attention. Following the pioneering work
of CONDENSATION [8], various improvements and extensions
have been proposed for visual tracking [2,9,16]. Because the
original CONDENSATION algorithm uses the state transition prior
as its proposal distribution, it belongs to the conventional
particle filters. To design better proposal distributions for
CONDENSATION, in general, there are two approaches: the direct
approach and the indirect approach. The indirect approach
attacks this problem indirectly by using an auxiliary tracker to
generate the proposal distribution for the main tracker. The
direct approach, on the other hand, addresses this problem
directly in its original space by taking into account the most
recent observation. The indirect approach is adopted in the
ICONDENSATION algorithm [9], where an auxiliary color tracker
is used to generate the proposal distribution for the main
contour tracker. While better than the conventional particle
filters, this indirect approach has two major limitations. First,
in many applications, e.g., audio-based speaker localization,
there is simply no easy auxiliary tracker or sensing modality
available. Second, and more importantly, the auxiliary tracker
itself needs a good proposal distribution if it plans to use
particle filters, or it falls back to ad hoc approaches.

Merwe et. al. have recently developed the unscented particle
filter (UPF) in the field of filtering theory [17]. Based on this
new development, in this paper, we introduce a direct approach
to generate better proposal distributions for audio/visual
tracking. The UPF is a parametric/non-parametric hybrid of
UKF and particle filters. The particle filter part of the UPF
provides the general probabilistic framework to handle non-
linear non-Gaussian systems, and the UKF part of the UPF
generates better proposal distributions by taking into account
the most recent observation.

The rest of the paper is organized as follows. In Section 2, we
present a new formulation of the particle filter framework that
accentuates the importance of the proposal distribution. In
Section 3, we present the UKF, which can be used to generate
more accurate proposal distributions for particle filters. The
resultant filter is the high-performance hybrid filter UPF. In
Sections 4 and 5, we apply the UPF framework in two real-
world audio/visual tracking applications. One is the audio-
based speaker localization, and the other is vision-based human
tracking. Experimental results of both applications demonstrate
the superior performance of UPF over the conventional particle
filters. We give concluding remarks in Section 6.

2. Particle Filtering
In the pioneering work of CONDENSATION [8], extended
factored-sampling is used to formulate the particle filter
framework. Even though easy to follow, it obscures the role of
proposal distributions. In this section, we present a new
formulation of particle filtering theory that is centered around
proposal distributions. This new formulation illustrates how to

improve the particle filter’s performance by designing better
proposal distributions.

2.1. Bayesian sequential importance sampling
A non-parametric way to represent a distribution is to use
particles drawn from the distribution. For example, we can
use the following point-mass approximation to represent the
posterior distribution of x:
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whereδ is the Dirac delta function, and particles {x0:t
(i)} are

drawn from p(x0:t|y1:t ). The approximation converges in
distribution when N is sufficiently large [5,17]. This
particle-based distribution estimation is, however, only of
theoretical significance. In reality, the posterior distribution
is the one that needs to be estimated, thus not known.
Fortunately, we can instead sample the particles from a
known proposal distribution q(x0:t|y1:t) and still be able to
compute p(x0:t|y1:t).

Definition 1 [14]: A set of random samples {x0:t
(i),

wt(x0:t
(i))} drawn from a distribution q is said to be properly

weighted with respect to p if for any integrable function g( )
the following is true
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Furthermore, as N tends to infinity, the posterior
distribution p can be approximated by the properly
weighted particles drawn from q [4,14,17]:
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There are two important points worth emphasizing here.
First, the definition says that an unknown distribution p can
be approximated by a set of properly weighted particles
drawn from a known distribution q. Second, the more
difficult problem of distribution estimation is converted to
an easier problem of weight estimation. The weights are
further given by:
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where the particles {x0:t
(i), wt(x0:t

(i))} are drawn from the

known distribution q, )(~ )(
:0
i
tt xw and )( )(
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normalized and normalized importance weights.

In order to propagate the particles {x0:t
(i), wt(x0:t

(i))} through
time, it is beneficial to develop a recursive calculation of
the weights. This can be obtained straightforwardly by
considering the following two facts:

1. Based on the definition of filtering, current states do
not depend on future observations. That is,
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2. As used in [8] and [17], the state dynamics is a Markov
process and the observations are conditionally
independent given the states, i.e.:
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Substituting the above two equations into Equation (6), we
obtain the recursive estimate for the importance weights:
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To summarize, in the sequential importance sampling step,
there are two places involving the proposal distribution.
First, particles are drawn from the proposal distribution
(Equation (4)). Second, proposal distribution is used to
calculate each particle’s importance weight (i.e., Equation
(8)).

Choosing the right proposal distribution is one of the most
important issues in particle filter’s design. In reality, there
are infinite number of choices of the proposal distribution,
as long as its support includes that of the posterior
distribution, and it is easy to sample from. As pointed out in
[12,14] and [17], the optimal proposal distribution is the
one that minimizes the variance of the importance weights
conditional on x0:t-1 and y1:t. In practice, however, finding
the optimal proposal is very difficult if not impossible.
Instead, the conventional particle filters have chosen to
trade the optimality with easy-implementation by using the
transition prior p(xt|xt-1) as the proposal distribution
[6,8,18]. They sample from the transition prior and
calculate the importance weight as follows:
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Even though simple to implement, this proposal results in
higher Monte Carlo variance and thus worse performance
[5,17]. Comparing the transition prior p(xt|xt-1) with the
general proposal distribution q(xt|x0:t-1,y1:t), we can easily
see that the most recent observation yt is missing in p(xt|
xt-1). This may cause serious deficiency in particle filters,
especially when the likelihood is peaked and the predicted
state is near the likelihood’s tail. The particles generated
from the transition prior can therefore easily land on low-
likelihood areas thus wasted. To overcome this difficulty,
we will explore new ways of generating better proposal
distribution in Section 3.

2.2. Selective re-sampling
Before we continue on discussing design better proposal
distributions, we would like to first present the complete
particle-filtering framework in the rest of this section. In
addition to choosing better proposal distributions in the
sequential importance sampling step, another crucial step in
designing particle filters is re-sampling. One of the most
important contributions made in the 1990s’ particle-filter-
renaissance is the introduction of the re-sampling step by
Gordon et. al. [6]. Its philosophy is to eliminate particles
with low importance weights and multiply particles with
high importance weights, thus improving the effective
particle size.

It can be proven [17] that without re-sampling the variance
of the importance weight increases over time. In practice,
this means one of the importance weights tends to one,
while others become zero. That is, the effective particle
size reduces from N to almost 1. This degeneracy
phenomenon has been observed in several research fields
[11,14,17]. In recent years, the re-sampling step has been
adopted in almost all of today’s particle filtering
algorithms. However, cautions must be taken when using
the re-sampling step: it should only be done when the
effective particle size is small.

The effective particle size S can be estimated as follows
[5,12,16]:
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The value of S varies between 1 and N. When all the
particles are of equal weight 1/N, the effective particle size
is N. When one particle is of weight 1 and rest are of
weight zero, the effective particle size is 1. It is intuitive
that when the weights are comparable to each other, re-
sampling can only reduce the number of distinctive
particles [14]. This suggests that one should not perform the
re-sampling step when S is large. On the other hand, when
the weights are very skewed (e.g., near the degeneracy
case), many particles are wasted because of their close-to-
zero weight, and the re-sampling step is required to increase
the effective particle size. In practice, a pre-defined
threshold ST can be used, e.g., ST = N/2, to determine if the
re-sampling step is needed.

2.3. Complete algorithm for a generic particle filter
To generate better particles and to avoid degeneracy, we
have discussed proposal distributions in Section 2.1 and the
effective sample size in Section 2.2. To summarize, we give
the complete algorithm for a generic particle filter in Figure
1.

3. Better proposal – the unscented particle filter
In Section 2.1, we have pointed out the deficiency of using
the transition prior p(xt|xt-1) as the proposal distribution.
The most obvious way to improve the proposal distribution
is to incorporate the current observation data. Various



Kalman filters are designed exactly for this purpose, though
their performance varies depending on the different
approximations they make. So far, the UKF is the best
Kalman filter for non-linear systems. By using UKF to
generate proposal distributions, we turn a generic particle
filter to a high-performance unscented particle filter (UPF)
[17]. In the rest of the section, we will first discuss the
unscented transformation [10], the basis for UKF. We then
give a complete UPF algorithm that uses the UKF to
generate its proposal distribution.

3.1. Unscented transformation
In many applications, we need to estimate the low-order
statistics, e.g., mean and covariance, of a random variable
that undergoes a non-linear transformation y = g(x). The
unscented transformation (UT) is an elegant way to
accurately compute the mean and covariance up to the
second order (third for Gaussian prior) of the Taylor series
expansion of g( ) [10,17]. Let nx be the dimension of x, x
be the mean of x, and Px be the covariance of x, the UT
computes mean and covariance of y = g(x) as follows:

1. Deterministically generate 2nx+1 sigma points Si={Xi,
Wi}:
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where κ is a scaling parameter that controls the
distance between the sigma points and the mean x .
α is a positive scaling parameter that controls the
higher order effects resulted from the non-linear
function g( ). β is a parameter that controls the

weighting of the 0th sigma point. α = , β =0 and κ =2

are the optimal values for the scalar case [17].

ixx Pn ))(( λ+ is the ith column of the matrix square

root. Note that the 0th sigma point’s weight is different
for calculating mean and covariance.

2. Propagate the sigma points through the nonlinear
transformation:
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3. Compute the mean and covariance of y as follows:
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The mean and covariance of y is guaranteed to be accurate
up to the second order of the Taylor series expansion.

3.2. The unscented Kalman filter
The unscented Kalman filter (UKF) can be implemented
using UT by expanding the state space to include the noise
component: TT

t
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t nmxx ][= . Let Na=Nx+Nm+Nn be the

dimension of the expanded state space, where Nm and Nn are
the dimensions of noise mt and nt, and Q and R be the
covariance for noise mt and nt, the UKF can be summarized
as follows [10,17]:

1. Initialization:
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2. Iterate for each time instance t:

a). Calculate the sigma points using the procedure in
Section 3.1:
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c). Measurement update:

1. Sequential importance sampling:

a). Sample N particles
)(i

tx , i = 1, 2, …, N, from the

proposal distribution q(xt|x0:t-1,y1:t). The proposal
distribution can be the transition prior as used in
traditional particle filters, or more advanced
distributions discussed in Section 3.

b). Compute the particle weights using Equation (8)

c). Normalize the importance weight using Equation
(7).

2. Selective re-sampling:

a). Compute the effective particle size S using
Equation (9).

b). If S < ST, multiple/suppress weighted particles to
generate N equal-weighted particles.

3. Output:

a). Use Equation (4) to compute expectations of g( ).
The conditional mean of xt can be computed with
gt(xt) = xt, and conditional covariance of xt can be
computed with gt(xt) = xtxt

T. They can be readily
used as the tracking results.

Figure 1. Algorithm for a generic particle filter. 
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Compared with the EKF [1], the UKF does not need to
explicitly calculate the Jacobians or Hessians. Therefore,
the UKF not only outperforms the EKF in accuracy (second
order approximation vs. first order approximation), but also
is computationally efficient. Its superior performance has
been demonstrated in many applications [10,17].

3.3. Unscented particle filter
Till now, we have discussed both the UKF and the generic
particle filters. For UKF, it can easily incorporate the most
recent observation into the state estimation (e.g., measure
update step in Section 3.2); however, it makes a Gaussian
assumption of the state distribution. For the particle filters,
on the other hand, they can model arbitrary distributions,
but incorporating new observation yt into the proposal
distribution is not an easy task. The conventional particle
filters simply ignore yt, trading for easy implementation. To
take advantage of the good features of both UKF and
particle filters, and to avoid their limitations, we can use
UKF to generate the proposal distribution for the particle
filter, resulting the hybrid UPF [17]. Specifically, the
proposal distribution for each particle is as follows:
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where tx and Pt are the mean and covariance of x,

computed using UKF (Equations (14)-(22)). Note that,
even though the Gaussian assumption is not realistic to
approximate the posterior distribution p(xt | xt-1, y0:t), it is less
a problem to generate each individual particles with distinct

tx and Pt. Furthermore, because UKF approximates the

mean and covariance of the posterior up to the second
order, the non-linearity of system is well preserved. The

UPF algorithm is easily obtained by plugging the UKF step
and Equation (23) into the generic particle filter algorithm.
The complete UPF algorithm is summarized in Figure 2.

So far we have discussed the UKF, and how we use UKF to
generate the proposal distribution for UPF. In Sections 4
and 5, we will show how to apply the UPF framework to
real-world applications where many practical considerations
(e.g., observation ambiguity) need to be taken into account.
To evaluate the performance of UPF, we also compare it
against the widely used CONDENSATION approach that uses
the transition priors as the proposal distribution. We
describe an audio-data-based tracking system in Section 4
and a visual-data-based tracking system in Section 5.

4. UPF tracking using audio sensory data
In many applications, including automated lecture rooms
[15] and teleconferencing [19,20], we need to reliably track
the location of the person who is talking. This is usually
done by using a microphone array and a pan/tilt/zoom
camera, as shown in Figure 1(a) [15]. The microphone
array can estimate both the horizontal panning angle and the
vertical tilting angle of the speaking person. For clarity, we
will only focus on panning angle estimation in this section.
Estimating the tilting angle follows the same approach.

In theory, two microphones are sufficient to estimate the
panning angle. Referring to Figure 3(b), let the two
microphones at locations A and B, and the sound source at
location C. When the distance of the sound source, i.e., |OC|, is
much larger than the length of the microphone pair baseline
|AB|, the panning angle COX∠=θ can be estimated as
follows [15,20]:

||
arcsin

||

||
arcsin

AB

vD

AB

BD
BADCOX

×==∠≈∠=θ (24)

where D is the time delay between the two microphones,
and v = 342 m/s is the speed of sound traveling in air.
There exists rich literature in time delay estimation in the
signal processing community, where D is taken as the peak
location in the generalized cross-correlation function
(GCCF) [19,20]. This approach works well in low-noise
non-reverberant environment. In reality, noise and
reverberation causes “ghost” peaks in the GCCF causing
this approach to break down. UPF provides a powerful
framework to handle ghost peaks, and we explore such a

(a) (b)

Figure 2. (a) Microphones (lower portion of the figure) 
and the pan/tilt/zoom camera (upper portion of the 
figure). (b) Sound source localization.

1. Sequential importance sampling:

a). Update particles )(i
tx , i = 1, …, N, with the UKF

using Equations (15)-(22) to obtain )(i
tx and )(i

tP .

b). Sample particles )(i
tx , i =1,…, N, from the proposal

distribution ),(),|( )()(
:1

)(
1:0

)( i
t

i
tt

i
t

i
t PxNyxxq =−

d). Compute the particle weights using Equation (8)

e). Normalize the importance weight using Equation
(7).

……

(rest are the same as the generic particle filters in Figure 1)

Figure 3. The complete algorithm for UPF 



solution in this section.

In order to utilize the UPF framework in a tracking
application, four entities need to be established first: system
dynamics ),( 11 −−= ttt mxfx to be used in Equation (16),

system observation ),( ttt nxhy = to be used in Equation

(17), likelihood p(yt|xt) to be used in Equation (9), and

innovation 1| −− ttt yy to be used in Equation (22). Once

these four entities are established, tracking proceeds
straightforwardly using the UPF algorithm described in
Figure 2.

4.1. System dynamics model ),( 11 −−= ttt mxfx
Let Tx ],[ θθ &= be the state space, where they are the panning

angle and velocity of the panning angle, respectively. To
model the movement dynamics of a talking person, we use
the Langevin process mdtddtd =⋅+ // 22 θβθ θ , whose

discrete form is [19]:
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where θβ is the rate constant, m is a thermal excitation

process drawn from N(0,Q), τ is the discretization time
step, and v is the steady-state root-mean-square velocity.

4.2. System observation model ),( ttt nxhy =
Our system observation yt is the time delay Dt. Based on
Equation (24), the observation relates to the state by

tttttt nvABnhDy +=== θθ sin||),( (26)

where nt is the measurement noise, obeying a Gaussian
distribution of N(0, R).

4.3. Likelihood model p(yt|xt)
Because of the noise and reverberation, there is no simple
expression for the likelihood model. Let J be the number of
peaks in the GCCF. Of the J peak locations, at most one is
from the true sound source. Following similar approaches
used in [8] and [19], we can therefore define J+1
hypotheses:
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where cj=T means the jth peak is associated with the true
sound source, cj=C otherwise. Hypothesis H0 therefore
means that none of the peaks is associated with the true
source. The combined likelihood model is therefore:
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where 0π is the prior probability of hypothesis H0, jπ , j =

1, …, J, can be obtained from the relative height of the jth

peak, Nm is a normalization factor, Dj is the time delay
corresponding the jth peak, U represents the uniform
distribution and N( ) represents the Gaussian distribution.

4.4. Innovation model 1| −− ttt yy

The same as the likelihood model, the innovation model
also needs to take into account the multi-peak fact:

)( 1|11| −=− ∑ −=− tt

J
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where 1| −tty is the predicted measurement obtained from

UKF (see Equation (22)).

4.5. Experiments
The previous sub-sections have developed the system
dynamics, measurement, likelihood, and innovation models.
Note how we handle the measurement ambiguity in the
likelihood model and innovation model by using multi-
hypothesis approach. To evaluate UPF’s tracking
performance, we compare it with the CONDENSATION

approach. The experiment is in a normal office, where
various noise and reverberation exist: PC fan noise, hard
drive noise, central air conditioner noise, occasional traffic
noise, desk’s flat-surface reverberation, book shelf surface
reverberation, and wall corner reverberation. This is a very
challenging environment for audio-based speaker
localization. The two microphones are placed 24cm apart
from each other. The speaker is about 1.5m away from the
microphones. Our software is developed in C++ on
Windows 2000 platform. No optimization is attempted and
the system runs comfortably in real-time with N=100 and
J=10. We report a typical tracking result in Figure 4. The
whole test sequence is 33s long. During 0s-4s, 7s-20s and
24s-33s, the speaker is talking. During the entire 33s, the
speaker is constantly moving left and right. The solid curve
is the ground truth of where the speaker is. The dashed and

Figure 4. Speaker tracking – a comparison between 
UPF and standard CONDENSATION with transition prior. 



dotted curves are the tracking results from CONDENSATION

and UPF, respectively. We have the following observations:

1. When the new observation yt and transition prior
p(xt|xt-1) overlaps, e.g., 0s-4s, both algorithms work
well.

2. When the new observation yt is not too far away from
the transition prior p(xt|xt-1), e.g., 7s-20s, both
algorithm can still track the speaker, but CONDENSATION

is considerably slower, i.e., 7s-9s.

3. When observation yt is far away from the transition
prior p(xt|xt-1), e.g., 24s-33s, UPF is still able to resume
tracking after a few seconds, because its proposal
distribution generated by UKF takes into account the
most recent observation. But CONDENSATION is stuck to
a wrong location and never comes back.

4. When the person is not talking, e.g., 4s-7s and 20s-24s,
CONDENSATION mostly stays at its old location while
UPF searches around. This is because even though the
person is not talking, other background noise may still
produce small sound sources. The UPF searches based
on the new observation -- sometimes accidentally
moves in the same direction as the person, e.g., 20s-
24s, sometimes totally opposite, e.g., 4s-7s. But as
soon as the person starts to talk, UPF resumes tracking.

5. UPF tracking using visual sensory data
Reliable human tracking in cluttered environment has many
real-world applications [8,15]. Human head can be modeled
by a 1:1.2 ellipse and hence be handled as a parametric
contour. One difficulty in contour tracking is the high non-
linearity of the likelihood model p(yt|xt). Even a small
difference in the parametric space could result in large
changes in the observation likelihood. Therefore, it is
imperative to distribute limited particles in an effective
way, which will benefit greatly from a better proposal
distribution.

5.1. System dynamics model ),( 11 −−= ttt mxfx
Let (r, s) represent the image coordinate. In our contour-
based tracking, the system states are the position of the
ellipse center and its horizontal and vertical velocity, i.e.,

T
ttttt srsrx ],,,[ &&= . Similar to Section 4.1, we adopt the

Langevin process to model the human movement dynamics:
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5.2. System observation model ),( ttt nxhy =
Refer to Figure 5, the ellipse is centered at the current state
location (rt,st). We generate K rays from the ellipse center
and let them intersect with the ellipse boundary. If we use
the ellipse center as the origin of a local coordinate system,
the intersections (uk, vk), k = 1, 2, …, K, can be obtained as
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by jointly solving the ellipse equation and the ray equation:
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Transforming the local (u, v) coordinate back to the image
coordinate, we obtain the observation:
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where nt is the measurement noise, obeying a Gaussian
distribution of N(0, R). Note that the observation model is
highly non-linear.

5.2. Likelihood model p(yt|xt)
We use the edge intensity to model the state likelihood.
Along each of the K rays, we use Canny edge detector to
calculate the edge intensity. The resulting function is a
multi-peak function, just like the GCCF in Section 4.3. The
multiple peaks signify there are multiple edge candidates
along this ray. Let the number of peaks be J, we can use the
same likelihood model developed in Section 4.3 to model
the edge likelihood along ray k:

∑
∑

=

=

+=

+=
J

j kjjkkkjmk

J

j jt
k

kjt
k

ktt
k

vuNNU

HypHypxyp

10

1

)(
0

)(
0

)(

),),((

)|()|()|(

σππ

ππ

The overall likelihood considering all the K rays is
therefore:
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5.3. Innovation model 1| −− ttt yy

The same as the likelihood model, the innovation model
also needs to take into account the multi-peak fact:
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Figure 5. The ellipse and the rays.



where k = 1, 2, …, K, kjπ is the mixing weight for the jth

peak along ray k, and can be obtained from the
corresponding edge intensity.

5.4. Experiments
Our tracking system is developed in C++ on Windows 2000
platform. No optimization is attempted and the system runs
comfortably at 30 frames/sec with N=30 and J=5. The
image resolution is 320x240. The experiments are
conducted in normal offices, with bookshelves, PC
monitors, and other people in the background. For more
tracking sequences, please refer to our supplement material
970.zip submitted to the conference. We report two typical
tracking sequences here. Figures 6 and 7 show the tracking
results using CONDENSATION and UPF. In both figures, when
the person moves to a location that is not the same as the
transition prior predicts, CONDENSATION is easily distracted
by background clutter (e.g., the bookshelf in Figure 6 and the
PC in Figure 7), because no current observation is taken
into account. On the other hand, because UPF’s superior
proposal distribution places the limited particles more
effectively, it tracks both sequences successfully.

6. Concluding remarks
In this paper, we applied a new formulation of the particle filter

framework in object tracking, which emphasizes the important
role played by the proposal distribution. This new formulation
shows us how we can improve particle filter’s performance by
designing better proposal distributions. We have further shown
how to apply the general UPF framework in real-world
problems through two tracking applications. Experimental
results of both applications demonstrate the superior
performance of UPF over the conventional particle filters such
as CONDENSATION.
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Figure 6. Tracking results.  Top row is based on 
CONDENSATION and bottom row is based on UPF.
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Figure 7. Tracking results.  Top row is based on 
CONDENSATION and bottom row is based on UPF.




