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ABSTRACT

A common problem in most active contour methods is that
the recursive searching scheme can only return a local opti-
mal solution. Furthermore, the internal energy of the snake
is not strong enough to control the shape of the contour.
To overcome these difficulties, in this paper, we develop a
causal internal energy term based on a radial contour rep-
resentation to encode the smooth constraint of the contour,
and develop a global shape priori to control contour’s shape
and position based on object’s dynamics. The causality na-
ture of the representation allows us to efficiently find global
optimal solution using dynamic programming. To validate
the efficacy and robustness of the proposed approach, we
apply this approach to track people in bad illumination and
cluttered environments. We report promising results in the
paper.

1. INTRODUCTION

Visual tracking has become more and more important. Real-
time applications such as video surveillance, video confer-
encing and human-computer interface in virtual environ-
ment all require the ability to track moving objects. A ro-
bust visual tracking algorithm in complex environments is
a very challenging task. For example, in the virtual envi-
ronment of CAVE [1], illumination and background change
dramatically between frames, making color or motion based
visual tracking almost impossible.

Contour-based tracking methods have been extensively
studied in computer vision community during the past decade
[2, 3, 4, 5, 6]. For tracking non-rigid objects in moving
background and bad illumination environments, it is a promis-
ing approach. Active contour model, e.g., snake, has been
proved to be a powerful tool for semi-automatic boundary
delineation in still and moving images. Amini et. al. de-
veloped an iterative algorithm where at each step dynamic
programming was applied to incrementally improve the cur-
rent contour result[7]. However, the contour evolution can
easily get stuck at local minimums and is sensitive to the

initial condition. They also used internal energy terms to
ensure smooth contours, but such constraint was not strong
enough to ensure global shape constraints.

To track the contours in clutter, Blake and Isard [8] de-
veloped the Condensation algorithm. This sampling-based
algorithm explores the prior knowledge of shape and mo-
tion by using a stochastic framework. The MAP result is
achieved by propagating the conditional probability densi-
ties over time. However, to represent the density function,
the required samples grow exponentially with the dimension
of the state space. It also required accurate models for both
shape and motion dynamics.

The most related work to our approach is the active rays
method proposed by Denzler and Niemann [9]. They in-
troduced radial representation of contours that overcomes
some of the problems in snake models. This representation
introduced the ordering of the contour points and prevented
the snake elements from crossing each other during evolu-
tion. However, they still used the traditional iterative opti-
mization technique rather than taking full advantage of the
new representation. Furthermore, there was no prior knowl-
edge on global shape or position dynamics integrated into
the framework.

In this paper, we propose a new contour-tracking algo-
rithm that is based on the radial representation and incor-
porates both shape/position priori and the local smooth con-
straints of the contours. The proposed approach finds global
optimal solutions efficiently by dynamic programming.

The rest of the paper is organized as follows. In Sec-
tion 2, we define the radial representation of contours and
the new internal energy. In Section 3, we give detailed de-
scription of our proposed approach. We test our algorithm
with real sequences and report promising results in Section
4. Concluding remarks and future works are in Section 5.

2. REPRESENTATION OF CONTOURS

Our objective is to design a new contour model to track
people in complex environment. In this section, we will



Fig. 1. Representation of a contour by active rays

describe the radial representation of object contours and re-
express the traditional smooth constraint of contours in a
causal way such that we can find global optimal solutions in
one dynamic programming iteration.

2.1. Radial Representations

Let the image coordinate be indexed by
���������

. Let 	�
�������������
be the center of a contour. Let � be the angular

direction of a ray coming out from the center. Let � be the
distance from any point in the ray to the center point. An
active ray �  � � � � � is defined as:

�  � � � � � 
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where
+

is the quantized length of the rays.
This is illustrated in Figure 1. In this radial contour rep-

resentation, we assume the object contour will intersect with
each ray only once. Then the contour can be represented by
the center 	 of the object and the 1D function , *� � � . Note
that this assumption is much relaxed than the non-concave
assumption. Furthermore, this assumption is valid in most
human tracking situations. For example, the profile of a per-
son’s head and the top view of a human shoulder both satisfy
this assumption. This new radial representation introduces
ordering to all the contour points. For visual tracking, our
task is to find the contour ,  � � � that best fits the constraints
and the image content, given the center point 	 . We could
also use line segments normal to the contour as our visual
feature (e.g., in [8]) if the contour is irregular. This, how-
ever, will not affect our proposed tracking scheme.

2.2. Energy Terms’ Definition

Like traditional contour models, we need to impose smooth
constraints on the contours. This is achieved by defining in-
ternal energy term to set penalty for rough contour points.
In the traditional snake model, the roughness is defined by
the first and second derivatives of the contour. This defini-
tion results in the non-causality of the snake model, because
the first and second derivatives of contour depend on both
the pixels before and after the current pixel on the contour.
Therefore, the optimization has to be solved iteratively. To
avoid this, we assume the radius on two adjacent rays will

not change dramatically for smooth contours. So we can
re-express the smooth constraint in a causal way:-/.0 � ,  � � 0 ��� 
21 04365 ,  � � 0 �87 ,  � � 0�94: � 5 ; (2)

Similarly, we can also define the higher order smooth-
ness terms:- . .0 � , *� � 0 ��� 
<1 . .0 365 � , *� � 0 �=7 , *� � 0�9>: ���7/� , �� � 0�94: �=7 , *� � 0�9 ; � 5 ; (3)

These new definitions are not the same as the first and
second derivative of the contour. But the difference is small
when the contour is smooth. In this paper, for computation
efficiency, we only use the first order smooth constraint.

We next define the external energy to set the influence
of the image on the contour. It is defined as a function of
the image gradient along the direction of the ray:
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where @ �NMO� is a non-linear monotonically increasing func-
tion.

The total energy of the contour is therefore given by:

- � ,  � � ��� 
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The best contour , �� � � is the one that gives the global
minimum of the total energy. Because the introduction of
ordering to the contour points and the new causal definition
of the smooth constraint, it is possible to find the global
optimal solution efficiently by dynamic programming.

2.3. Energy Minimization

To find the best-fit contour, the algorithm starts from � R 
 '
with

-�S � � R � ��T � 
 - ? � ��T � and propagates the energy to�VUW
�XFY , where Z is the number of active rays quantized
from

'
to XLY . For every pixel along a ray �>T&[ : , we can

find the optimal energy for a contour ending on it by the
following propagating equation:- S � � T&[ : � � T&[ : � 
 \E"]#^`_Lacb R�d egfih - S � � T � � T � � - 0 � � T � � T&[ : �kj� -%? � � Tl[ : � (6)

where
- 0 � � T � � Tl[ : � 
21 0 3�5 � T&[ : 7 � T 5 ; is the smooth con-

straint.
We can find the best contour by finding the minimum

energy point along the last ray 	nmpo ^ -qS � XLY � � � and then
back-trace to find the whole contour that gives this optimal
energy.



This method works only for open contours. For closed
contours, we have an extra constraint that the beginning
point and the ending point should be the same. We can still
apply dynamic programming in this situation. First we fix
the start point � � � R � and find the best contour that ends at
the same point. After trying all the possible start points, we
choose the one giving the optimal energy. This is the global
optimal solution, but it costs

+
times the computation over

the open contours.
Unlike traditional snake model, the proposed method

gives us the global optimal solution in one dynamic pro-
gramming iteration.

3. TRACKING WITH GLOBAL SHAPE PRIORI

The previous section has described our modified active con-
tour algorithm. However, with only the local smoothness
constraint, it is still difficult to produce good results in clut-
tered environments. For example, there may exist smooth
and strong edges on the background and that will severely
distract the contours.

In most applications, we have prior knowledge about the
shape of the foreground objects. It is common to represent
the contours of human faces or hands as ellipses. Further-
more, we know the speed and position of the objects do
not change dramatically between frames. In the traditional
snake model, the tracking results in previous frame will only
be used as initial condition for recursive search. There is no
guaranty that the object’s shape and position will be prop-
erly maintained.

In our new scheme, it is easy to incorporate such in-
formation into an energy term. First, we assume the object
contour can be represented by some global parameters, such
as ellipse. Knowing the object’s shape and position in the
previous frames, we can predict its new shape and position
in current frame. If the prediction is accurate, the deviation
of current contour from the prediction will be independent
a zero-mean Gaussian as shown in following equation:

,sr*� � � 
ut,sr*� � � � +v��'!��wyxz�
(7)

where t,sr�� � � is the predicted position, ,{r*� � � is the true
position of contour points on the rays, and t	 is the predicted
object center.

Now we can incorporate the global shape/position priors
into an extra energy term:-}| � ,sr�� � � 
J1 | 365 ,srE� � �87 t,srE� � � 5 ; (8)

Because of the parameterization of the contour, we can
represent the contour with small number of parameters and
it is much easier to incorporate the dynamic properties of
the objects to predict where the object will be in next frame.
The tracking procedure is summarized as follows:

Fig. 2. Tracking with traditional contour model. The con-
tour tracking results are severely distracted by the sharp
edges on the background.

1. Predict where the object will be in current frame by
object’s dynamics and the results in previous frames.

2. Given the predicted contour of the object, the best
contour in current frame can be found by solving the
optimization of the total energy:

- � , r � � ��� 
2P ;�QR � - 0 � , r � � ��� � - ? � , r � � ���� -}| � ,sr�� � ����� D �
(9)

3. Finally, we fit an ellipse to the contour points and es-
timate the velocity of the object (e.g., translation and
rotation). Go to step 1 for next frame.

To begin this tracking procedure, a separate initializa-
tion module is needed. This can be done either manually or
by change-detection [11].

4. EXPERIMENTS

To validate the efficacy and robustness of the proposed al-
gorithm, we test our algorithm in a cluttered office sequence
[12]. There are 499 frames in this sequence, with 30 frames
per second. We use gray value only. Note that the blinds and
the door (sharp edges and cluster) impose a great challenge
to the visual tracking algorithms. Also note that the se-
quence was captured by a pan/tilt/zoom camera that moves
all the time. For the traditional contour tracking without
global shape priori, the contour can easily stuck in the back-
ground. The tracking results of four frames are shown in
Figure 2.

When the person moved close to the door, the sharp edge
along the door greatly distracted the tracking. The edge is



Fig. 3. Tracking with our new contour model. The tracking
results quickly recovered when the user moves away from
the door.

smooth and strong – local smoothness constraints alone are
not sufficient to avoid the distraction.

In our new tracking algorithm, we use 60 rays and ap-
proximate human heads with ellipses. Although the contour
in frame 355 is distracted a little bit, it is quickly recovered
in frame 357 because of the shape and dynamics we used in
our algorithm.

5. CONCLUSION

In this paper, we introduce a new representation of contour
model. The new causal definition of smoothness constraint
enables us to find the global optimal solution with dynamic
programming instead of iterative search methods.

With the new contour representation, we can also eas-
ily integrate the global shape/position priori with an extra
energy term. Experimental results on a cluttered office en-
vironment demonstrated the robustness of our tracking al-
gorithm.

When background noise is extremely high, this contour
tracking may still fail. This is mainly because we assume
the tracking result in the previous frame is correct, so the
error may accumulate. We are working on integrating this
model with probabilistic multiple hypothesis tracking (MHT)
methods and with region-based tracking methods to further
improve the robustness.
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