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ABSTRACT

This paper presents an efficient method to integrate various
spatial-temporal constraints to regularize the contour track-
ing. The global shape of the contour is represented in a para-
metric form. Based on the parametric shape prior, a causal
smoothness constraint can be developed. The causality na-
ture of the constraint allows us to do efficient probabilistic
contour detection using the powerful Hidden Markov Model
(HMM). The contour parameters are then updated accord-
ing to the detected contour points and the object dynamics
by an Unscented Kalman filter (UKF). Due to the compre-
hensive spatial-temporal constraints, the algorithm is very
robust to severe distractions. Real-time performance is also
achieved. To validate the efficacy and robustness of the pro-
posed approach, we apply this approach to track people in
bad illumination and cluttered environments and promising
results are reported.

1. INTRODUCTION

Visual tracking has become more and more important. Real-
time applications such as video surveillance, video confer-
encing and human-computer interface in virtual environ-
ment all require the ability to track moving objects. It is a
very challenging task to do efficient and robust visual track-
ing in complex environments, especially in some virtual en-
vironments where illumination and background might change
dramatically between frames.

Contour-based tracking methods [7, 11, 9, 4] have been
proved to be a powerful tool for boundary delineation. To
handle the observation noise, local spatial constraints (e.g.
contour smoothness) are enforced during contour evolution.
However, for tracking contours in cluttered environments,
more constraints are necessary. For example, the parametric
shape constraint can greatly reduce the solution space and
object dynamics should be considered to take the temporal
constraints (e.g. object dynamics) into account.

Blake and Isard [5] developed a sampling-based algo-
rithm (CONDENSATION) to explore the parametric shape
prior and object dynamics. The MAP result is achieved
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by propagating the conditional probability densities over
time. However, this non-parametric representation (i.e. us-
ing a set of discrete samples) of the probability density func-
tion requires a large number of samples which grows expo-
nentially with the dimension of the state space. Further-
more, the assumption that the observations are independent
to each other could hamper the performance of the algo-
rithm.

To deal with the problems in previous methods, we pro-
pose a novel contour tracking algorithm to combine the global
shape prior, object dynamics and local spatial constraints to
achieve robust contour tracking. The object contours are
modeled by parametric shape, e.g. ellipse. The contour
tracking is divided into two stages.

The first step is to find the contour points of the object
from the noisy image. Unlike traditional snake model, we
simplified the traditional non-causal smoothness constraint
to a causal form based on the parametric shape prior. There-
fore, a Hidden Markov Model (HMM) is designed to en-
force this causal smoothness constraint when detecting con-
tour points. A probabilistic solution can be obtained using
efficient forward-backward algorithm.

The second step is to estimate the shape parameters based
on the detected contour points and the object dynamics. Un-
like the non-parametric methods (e.g. CONDENSATION
[5]), we assumes uni-mode Gaussian distribution and resort
to the efficient Kalman filtering technique. Because the de-
tected contour points are non-linearly related to the contour
parameters, the Unscented Kalman Filter (UKF) [6] is used
to estimate the contour parameters over time.

The rest of the paper is organized as follows. In Section
2, we explain the HMM for the contour detection. In Sec-
tion 3, the UKF is adapted to update the contour parameters
through time. We test our algorithm with real sequences and
report promising results in Section 4. Concluding remarks
and future works are in Section 5.

2. CONTOUR DETECTION USING HMM

To detect contour in noisy images, the dependency between
neighboring contour points, i.e. contour smoothness con-



straint, is exploit in the active contour model [7, 12, 9]. A
common difficulty in these traditional methods is its non-
causal smoothness constraint and the deficiency in recur-
sively refining the contours in the 2D image plane [1]. Only
the local minimum can be obtained instead of a probabilis-
tic solution. In this section, we design a causal smoothness
constraint based on parametric shape prior, which can be
represented by a Hidden Markov Model. Hence, an effi-
cient probabilistic contour detection can be achieved using
the forward-backward algorithm.

2.1. Hidden Markov model

Due to the aperture problem, we can restrict the contour
searching to a set of normal lines of the predicted contour
(Figure 1) at no big loss. Let ¢ = 1,..., M, be the index
of the normal linesand A = —N, ..., N, be the index of the
pixels along a normal line. To track the object is to find out
the true contour points on all the normal lines. To detect
the contour points accurately, we use HMM [10] to model
the dependencies between neighboring normal lines (con-
tour smoothness constraint).

The hidden states of the HMM are the true contour points
on all normal lines, (denoted as s = {s1,..., 54, ..., sar}).
So, the number of states are the number of pixels on each
normal line (i.e. 2NV + 1). Because the contours are sig-
nified by the sharp intensity changes, we do the edge de-
tection along the normal lines. The observations, O =
{04, ..., Oy, ..., Opr }, are the edge detection results on each
normal line ¢. The HMM is fully specified by the observa-

tion model P(Oy|s4), and the transition probability p(s4|s¢—1),

which we described as follows.
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Fig. 1. Illustration of the 1D contour model: At frame ¢, the
solid curve is the predicted contour. The dashed curve is
the true contour that we want to find. The measurements are
collected along the M normal lines of the predicted contour.
s(¢) is the true contour point on the ¢th normal line. The
true contour is found if we detect all the s(¢), ¢ € [1, M].

2.2. Observation likelihood of HMM

The observation likelihood function based on the edge de-
tection (i.e. z4) is similar to the one used in [5]. Because of

noise and image clutter, there can be multiple edges along
each normal line. Let J be the number of detected edges
(z¢ = (21,22, ...,27)). Of the J edges, at most one is the
true contour. With the assumption that the clutter is a Pois-
son process along the line with spatial density + and the
true target measurement is normally distributed with stan-
dard deviation o, we can obtain the observation likelihood
model as follows:
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where ¢ is the prior probability of the contour point not be-
ing detected by edge detection.

2.3. Statestransition probabilities

Another important component in HMM is the states transi-
tion probabilities which encode the spatial dependencies of
the contour points on neighboring normal line. To achieve
this, the smoothness constraint has to be represented in a
causal form. In Figure 1, we can see when the normal lines
are dense (e.g., 30 in our experiments), the true contour
points on adjacent normal lines tend to have the same dis-
placement from the predicted contour position (indexed as
0 on each normal line). This correlation is causal and can
be captured by transition probabilities p(s¢|ss—1):

p(8¢|8¢_1) =cC- 6_(s¢_3¢_1)2/0§ (2)

where ¢ is a normalization constant and o, is a predefined
constant that regulates the smoothness of the contour. This
transition probability will penalize the roughness between
neighboring contour points, hence resulting in a smooth con-
tour.

2.4. Probabilistic contour detection

Given the observation sequence O = {Oy, ¢ € [1, M]} and
the transition probabilities a; ; = p(sg41 = j|sg = i), we
can get a probabilistic contour detection using the forward-
backward algorithm. The "forward probability distribution”
and the "backward probability distribution” [10] are defined
as follow:

Oé¢(8) :p(01302;---50¢53¢ :S) (3)
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After computing the forward and backward probability,
we can compute the probability of each state at line ¢;

P(s; = 5/0) = % E[-N,N] ()
where P(sy, = s|O) represents the probability of having

the true contour point at s on the normal line ¢. Because



Kalman filter can only handle uni-mode Gaussian distribu-
tion, we then estimate the expected position and the vari-
ance of the true contour point on each normal line:

N
Oys = Z 5% % P(s4|O)

s¢=7N
(6)

which are then used in the UKF as the measurements to
estimate the contour parameters in the next section.

Z s % P(s4]0),

3. TRACKING WITH OBJECT DYNAMICS

To increase the robustness of tracking, we also impose the
parametric shape prior and the object dynamics. The shape
prior greatly reduces the solution space. In our experiment,
we use ellipse to approximate the human’s heads. For the
contour point on each normal line ¢ (z4, y4), we have:

amfb + by; +cryyy +dry +eys —1=0 (7

Let vector X; = [a,b,c,d,e]T denotes the parameters
of the contour at time ¢. The true contour point on each nor-
mal line is the intersection of the normal line with the para-
metric contour X;. We denote it by vector Y;. Considering
the temporal correlations, the image formation process can
be formulated as follows:

Xy = f(X¢—1,m4—1) (8)

Y; = h(ug, X¢,n4) 9)

where f(.) is the system dynamics, h(.) is the observation
model (i.e. how are the contour points related to the current
contour parameters), u; is the system input, m; and n; are
the process noise and observation noise, respectively.

In this paper, we adopt the Langevin process to model
the object dynamics [13]:

Xt 1 T Xt_l 0

EAREI ks R
where a = exp(—fs7), b = 0v1 — a?. By is the rate con-
stant, m is a thermal excitation process drawn from Gaus-
sian distribution N (0, @), 7 is the discretization time step

and o is the steady-state root-mean-square velocity.
Because the observation model A(.) is non-linear, we
have to resort to non-linear estimation technique such as ex-
tended Kalman filter. The UKF is proposed as an alternative
in [6, 8], which is provably superior to the EKF. The UKF
does not need to explicitly calculate the Jacobians or Hes-
sians. Therefore, the UKF not only outperforms the EKF
in accuracy (second order approximation vs. first order ap-
proximation), but also is computationally efficient. Its su-
perior performance has been demonstrated in many appli-
cations [6, 8]. Also different from the random sampling

methods such as particle filtering, only a small number of
carefully chosen sample points are propagated in each esti-
mation step, which provide a compact parameterization of
the underlying distribution. Hence it is much more efficient
than the sampling methods. The UKF can be summarized
as follows (for more details, please refer to [6]:

1. Select 2n + 1 sigma points X,; according to:

tht l == 0
Xt|t - U,li l= ]., ey M (11)
Xt|t+0t l=n+1,...,2n

Xl,t\t =

where ¢! is the Ith column of the matrix \/nX x (t|t)

2. Compute X, by applying the system dynamics
equation (8) to Xy,

3. Compute the predicted state X’Hm (and the error co-
variance matrix)

2n

B 1

Xt+1\t = m Z Xl,t+1\t (12)
=0

4. Compute Y; |, by applying the observation equation
(9) to Xy yq)e-

5. Compute the predicted observation fft+1|t as

2n

- 1
Yy = mrl Z Yieqipe (13)
1=0

6. Compute the innovation v;11 = Y41 — fftH” from
the measurement Vi1 = [y 1, s Ypp1s oo Yhe] T
(obtained from equation (6)) and the predicted obser-

vation Yy -
7. Update the Kalman gain matrix Ky 1.

8. Update the estimate of the state vector (and the error
covariance matrix)

Xt+1\t+1 = Xt+1|t + Kip1ve41 (14)

4. EXPERIMENTS

To validate the efficacy and robustness of the proposed al-
gorithm, we test our algorithm in a cluttered office sequence
[2]. There are 499 frames in this sequence, with 30 frames
per second. We use gray value only. Note that the blinds and
the door (sharp edges and cluster) impose a great challenge
to the visual tracking algorithms. Also note that the se-
guence was captured by a pan/tilt/zoom camera that moves
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Fig. 2. Tracking with traditional contour model. The con-
tour tracking results are severely distracted by the sharp
edges on the background.
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Fig. 3. Tracking with our new contour model. The tracker
survives all the severe distractions on the background.

all the time. For the traditional contour tracking without ob-
ject dynamics, the contour can be easily distracted by the
cluttered background. The tracking results of four frames
are shown in Figure 2.

When the person moved close to the door, the sharp edge
along the door greatly distracted the tracking. The edge is
smooth and strong — local smoothness constraints alone are
not sufficient to avoid the distraction. Our new tracking al-
gorithm survives all the severe distractions by integrating
the shape prior and object dynamics.

5. CONCLUSION

In this paper, we present a real-time parametric contour track-
ing algorithm. Two main contributions are made to im-
prove the efficiency and robustness of the contour track-

ing. First, the local spatial constraint (e.g. contour smooth-
ness) is represented in a causal form based on the para-
metric shape prior. Hence, it can be enforced by a Hidden
Markov model and efficient probabilistic contour detection
is achieved. Second, to handle the non-linearity between the
detected contour points and the contour parameters, an UKF
is used to update the contour parameters according to the
object dynamics. Because the efficiency of both the HMM
and the UKEF, the algorithm can run comfortably real-time
on a Pl 833 computer.
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