
Video Sequence Learning and Recognition via Dynamic SOM

Qiong Liu, Yong Rui, Thomas Huang, Stephen Levinson
Beckman Institute for Advance Science and Technology

University of Illinois at Urbana-Champaign
405 North Mathews, Urbana, IL 61801, U.S.A.
Email:{q-liu2, yrui, huang, sel}@ifp.uiuc.edu

ABSTRACT

Information contained in the video sequences is crucial

for an autonomous robot or a computer to learn and
respond to its surrounding environment. In the past,
robot vision is mainly concentrated on still image
processing and small “image cube” processing [1].
Continuous video sequence learning and recognition is
rarely addressed in the literature due to its high
requirement on dynamic processing. In this paper, we
propose a novel neural network structure called Dynamic
Self-Organizing Map (DSOM) for video sequence
processing. The proposed technique has been tested on
real data sets, and the results validate its learning
/recognition ability.

1. INTRODUCTION

Video sequences contain visual information that a
robot/computer needs to see the world. Current computer
vision research has been mainly focused on static analysis
of still images, or simple derivatives on video sequences
[1][2][3][4]. How to process dynamic video sequences
more naturally is still an open problem in research.

A video sequence is a typical spatio-temporal signal.
In general, its processing techniques can be separated into
two categories, static processing and dynamic processing,
according to their different time treatment strategy.

Static video processing (SVP) is a commonly used and
successful technique [2][3][4]. It processes video based
on short video segments. This method is straightforward
and easy to be analyzed, but it requires buffering the
whole segment, and costs big memory space.

Dynamic video processing (DVP) handles a video
sequence based on its current inputs and past states, but it
does not need to save many past inputs. Compared with
SVP, DVP is not so straightforward. However it costs
less memory space than SVP in general, and it is more
similar to human’s processing strategy.

The continuity property of a video sequence makes it
difficult to cut out video segments for static
comparison/recognition. Moreover, this property makes it
difficult to save all data for future reference. Due to the
above difficulties, it seems to be more appropriate to use
DVP instead of SVP for video sequence
learning/recognition.

Next, we will present our basic ideas and experiments
in details. We hope this presentation can inspire useful
discussions in this research area. In section 2, we
introduce some basic ideas of Kohonen Map and dynamic
neural network. Because we will use knowledge from
these networks to construct DSOM, this section is mainly
for those readers who are not familiar with these
structures. Section 3 gives the detailed construction
procedure of DSOM and training equations. It includes
the most important contents of this paper. Section 4 is the
current simulation result of DSOM. It uses the DSOM’s
classification map and classification result to lead the
readers to a more concrete comprehension of this
technique. Section 5 concludes this paper and discusses
some future work.

2. RELATED WORK

In the neural network society, Kohonen Map and
dynamic neural network are two popular network
structures for learning. Both of them have their own big
advantages for solving specific problems, and have their
own big disadvantages for processing large set of
dynamic data.

2.1. Kohonen Map

The Kohonen Map (or Self-Organizing Map) is an
algorithm for visualizing and interpreting large high-
dimensional data sets [5]. The map consists of a regular
grid of processing nodes. A vector of features through
high-dimensional observation is associated with every
processing node. The algorithm tries to use the restricted
vector map to represent all available observations with an

optimal accuracy. For optimal representation of all
available observations, the vectors are ordered on the map
so that similar vectors are close to each other and
dissimilar vectors are far from each other [5]. This
representation strategy is analogous to the map
representation in human’s brain cortex, and proved to be
effective in many applications [6].

The search and organization of the representation
vectors on the map can be described with the following
regressive equation, where t =1, 2, 3, … is the step index,
x is a observation, mi(t) is the vector representation on
node i at step t, c is the winner index, and hc(x),i is the
neighborhood updating function [5].

||)(||||)(||, tmxtmxi ic −≤−∀ (1)

))(()()1(),(tmxhtmtm iixcii

ρρρρ −⋅+=+ (2)

After iterative training process, a SOM will become

ordered. An ordered SOM can be used as a classifier, but
the classification accuracy is not very high in many
applications. To increase the classification accuracy, a
nodal vector refinement stage called Learning Vector
Quantization (LVQ) must be performed on the ordered
SOM [1]. At this refinement stage, an input vector is
picked at random from the input space. If the class label
of the input vector and its SOM representation vector
label agree, the representation vector will move toward
the direction of the input vector. Otherwise, the
representation vector will move away from the input
vector. LVQ is a supervised learning process. It can help
the ordered SOM to refine its classification boundary and
improve the classification accuracy. It has nothing to do
with the map topology formation process.

2.2. Dynamic Neural Network

In the traditional McCulloch-Pitts neuron model or
Rosenblatt’s perceptron, every synapse is considered as a
weight [7]. With this model, the perceptron output is only
related to the current input. That makes it impossible for
us to use this simple model to capture time variance of the
signal. In the real world, a synapse works in a more
complicated manner. It has resistance, capacitance,
transmission chemicals etc. [7]. Equipped with these
components, a synapse could capture the time variance of
an input signal. To simulate a synapse in a more accurate
way, scientists have developed many dynamic models in
the past decades [8][9][10]. Among all these proposed
models, the neural filter model [11] (Fig.1.) is a promising
one for presentation and application [12].

In Fig.1, the whole diagram can be viewed as an
individual neuron. All synapses in this neuron model are
represented by linear filters. The inputs of these filters are
connected to the input signals of the neuron. The outputs

of these filters are connected to the summation node of
the neuron as usual. The summation node and the
squashing function block are still similar to their
representations in most other neuron models. The linear
digital filters for every synapse can be IIR filters or FIR
filters [13]. The parameters of these filters can be trained
through the popular Back-Propagation training algorithm.

x1(n) bias

x2(n)
 y(n)

xm(n)

Fig.1. Filter model of an individual neuron

3. DYNAMIC SOM CONSTRUCTION

From the above descriptions, we know that Kohonen
Map is good for processing large high-dimensional data
set [5], and dynamic neural network is good for time
sequence pattern recognition. Both of these networks
have their big advantages. But their limitations cannot
permit us to use them separately for dynamic video
learning and recognition. The limitation of Kohonen Map
for time sequence processing is caused by the static
feature vector representation in the map model. The
limitation of dynamic neural network is caused by its
dramatic connection increase for large data set. In the
following, we will propose a construction method to
combine these two networks and inherit the advantages
from both of them without losing generality.

The construction of DSOM is to substitute every static-
processing unit in the SOM with a single output dynamic
neural network. With this substitution, every SOM node
will be able to deal with time sequences instead of static
vectors. At the same time, we got a huge number of
dynamic processing units for dealing with large sets of
time sequences.

The DSOM map structure is sketched in Fig.2. In this
construction, every synapse has three adjustable
parameters, the input connection, the hidden node
feedback connection, and the hidden node output
connection. The node on the map grid functions as the
summation node and the squashing block. The arrow that
leaves the summation node is an output. The map grid
has the same function of the traditional SOM map grid,

Digital Filter

Digital Filter

Digital Filter

Σ ϕ(•)

and the neighborhood definition is also similar to the
original SOM.

 OUTPUT

 w3 w3 IIR
 Filter
w2
 xm xm
 w1

 x1 x1

 INPUT

Fig.2. DSOM Diagram

The formation of DSOM can be separated into three
distinctive stages. These stages are the competitive stage,
the learning stage, and the re-labeling stage. In the
competitive stage, the input time sequence is tried on all
map nodes. With a vector sequence input, every node
will output a one-dimensional sequence as the response.
All output sequences of the map nodes will be integrated
separately. The node which has the highest output
integral in all map nodes will be chosen as the winner of
the map. The node which has the lowest output integral
in all map nodes will be chosen as the loser of the map.
For the simple construction we present here, the
competitive process can be described with the following
equations:

() () ()121 −⋅+⋅= nswnxwns
ρρρρρ

 (3)

∑
=

⋅=
m

i
ii nswnv

1
3)()((4)

()()nvny ϕ=)((5)

∑
=

=
l

n

nyI
0

)((6)

where x is the input, s is the output of the digital filter, w1
is the connection weight from the input to the hidden
node, w2 is the hidden node feedback connection weight,

w3 is the connection weight from the filter output to the
summation node, v is the summation of the digital filter
outputs, y is the squashed value of v, I is the integral value
of y in the time domain, n is the time step, l is the total
length of the input sequence, m is the dimension of the
input vector at one time step. w1, w2, w3 are different for
different connections. The relation of these variables can
be viewed in Fig.3.

The learning stage follows the competitive stage. At
this stage, the winner’s label1 will be compared with the
input sequence label. If the two class labels agree, the
desired nodal output sequence2 will be set to constant 1
for all map nodes. Then the map nodes will be trained
with back-propagation algorithm based on the input
sequence and the desired output sequence. The learning
rates for different map nodes are different. The winner
node will have the highest learning rate in all map nodes.
Other map nodes will have lower learning rates based on
their distance from the winner. The farther the distance to
the winner, the lower the learning rate. Learning rate
change is controlled by a neighborhood function. The
width of the neighborhood function will shrink as the map
training iteration number grows. Usage of this
neighborhood function is very similar to that in the
ordinary SOM approach. The learning process is
controlled by equations 7-13.

() () ()thtt ⋅= ηγ (7)

)()()()()1(33 tstttwtw o

ρρρ ⋅⋅+∆⋅=+∆ δγα (8)

)1()()1(333 +∆+=+ twtwtw
ρρρ

 (9)

)()()()()1(22 tstttwtw h

ρρρ ⋅⋅+∆⋅=+∆ δγα (10)

)1()()1(222 +∆+=+ twtwtw
ρρρ

 (11)

)()()()()1(11 txtttwtw h

ρρρ ⋅⋅+∆⋅=+∆ δγα (12)

)1()()1(111 +∆+=+ twtwtw
ρρρ

 (13)

In equations 7-13, γ is a combined learning rate, t is the

time, η is the time varying learning rate, h is the
neighborhood function, α is the learning moment
constant, δo is the local gradient at the neuron output, δh is
the local gradient at a hidden node of the neuron, other
variables are defined in equations 3-6. η(t) is a positive
real value. It decreases gradually as the time passes.
“h(t)” is a neighborhood function, whose width will
decrease as the time increases.

1 Input sequence label is its class name. Each map node is also labeled
with a class name or “unused”. See the following re-labeling stage for
detail.
2 Each node is a dynamic neuron model. It outputs a time sequence for
every time sequence input. The expected/desired time sequence output
can be set to constant -1 or 1 sequence. We back-propagate the
difference between the real output and the expected output for neuron
model training on every map node.

∑

∑ ∑

∑

Map grid node

After we train the map based on the winner’s
neighborhood, we train the map based on the loser’s
neighborhood. The training process follows the same
equations as the winner-centered training. When the input
label and the loser label agree, set the desired output to 1.
Otherwise, set the desired output to –1. The reason for us
to add the loser centered training is to balance the
dynamic neuron training. If we use winner-centered
training only, we can also get an organized map, but it is
possible to get a biased output on every processing node.

The re-labeling step is very simple. Just pass all
training data through the trained map, and count firings of
each class on every node based on the competitive
equations. A node is labeled by the class, which has the
biggest firing count on the node. Nodes without firing
will be labeled as “unused”3. After the re-labeling stage,
the training process goes back to the competitive stage
and learning stage again. The three-stage process is done
iteratively till the map organization is stable.

Careful readers may find that this training algorithm is
somehow similar to the LVQ learning in the SOM
technique. The difference between LVQ learning
algorithm and our algorithm is that LVQ uses a fixed
label map in its class refining process, but we use a
changing label map in our organizing stage. When the
neighborhood function shrinks to a very small region, our
algorithm will fix the label map for increasing the training
speed4.

The detailed training process of the DSOM can be
described as follows:

1. Label all map nodes as “unused”.
2. Set all adjustable connection weights with small

random numbers.
3. Input a temporal sequence segment to every node on

the map. It does not matter how long the sequence is
if it is in a reasonable range. We have sequence
length from about 40 to 100.

4. Record the output integral of every map node.
5. Find the winner node, which has the highest output

integral among all nodes.
6. Find the loser node, which has the lowest output

integral among all nodes.
7. Compare the sequence label with the winner/loser

node label. If the winner is “unused”, set its expected
output to 1. If the loser is “unused”, do nothing to the
map. If the sequence label is the same as the node
label, set the expected neuron output to constant 1.

3 How to update “unused” nodes will be explained in detail in the
following step by step algorithm.
4 Because the updating rates for neighborhood nodes become very small
as the neighborhood function shrinks to a very small region, it is
reasonable to omit the neighborhood nodes’ updating. After our
algorithm fixes the label map, it only needs to update one node for every
input instead of updating all map nodes for every input. That can greatly
increase the training speed.

Otherwise, set the expected neuron output to constant
–1. This value is the expected output value for every
single step.

8. Use the back-propagation algorithm to train the
network weights according to the input sequence and
the expected output value. The training step size is
set high for the winner/loser, and gradually decreases
for remote nodes. The step size decrease follows the
ordinary SOM neighborhood function. The winner-
centered training and the loser-centered training are
separated.

9. Pass all training sequences through the map, and re-
label the map according to firing count on every
node. Nodes without firing will be marked as
“unused”.

10. Go through step3 to step9 till the map is stable.
11. Fix the label map, and do step 5, 7, 8 without

considering the loser and unused nodes till the map is
stable.

4. SIMULATION RESULTS

For testing the learning ability of DSOM, we tried this
model with some real video sequences. These video
sequences are generated with mouse click on the screen.
The paths of these video sequences reflect the writing
procedure of 10 digits (0-9). The test/training data set has
10 classes. Each class has 10-16 noisy samples for
training and testing respectively.

Before we process the digit sequences with DSOM, all
of them are normalized to 9 by 9 frame size. We then
project these 9 by 9 frame horizontally and vertically to
produce an 18-element feature vector. Let p and q be the
indices of horizontal and vertical axes. If the writing path
passes point (p,q) at time t, the input vector at time t will
be [x(0), …, x(i), …, x(17)] with x(p) =1, and x(9+q)=1,
and x(i)=-1 for i≠p or i≠9+q. Interested readers can also
try other features as the network inputs.

A 4x4 DSOM for the classification task is constructed
with every processing unit having 18 inputs, 18 hidden
units, and 1 output. The digital filters we used in every
processing node are simple first order IIR filters. The
neighborhood function we used for training is a 2D
Gaussian function. Training/testing procedure is just as
we described before. Fig.4. gives a typical training result
(label map) of our experiment.

The numbers in the label map are class label number
(0-9 correspond to digits 0-9. “x” corresponds to
“unused”.). At the beginning of the training process, most
sequences keep on firing on a small number of neurons.
As training iteration number goes up, sequence firings
spread across the map, and gradually concentrate on their
own centers. We can clearly notice the class grouping
effect on the map after 6000 iterations of training. The
correct classification rate with our examples was around

60% to 70%. In a detailed firing distribution map, we can
find that some 9s are mis-classified as 1 and vise versa, 6
and 0 are also difficult to be separated clearly.
Considering that we only use a very simple neuron model
on every node, this is already an amazing result.

0 x 8 1
x 8 x 8
0 x x 0
0 x x 2

(a)

2 5 4 1
5 3 4 9
7 5 8 6
7 0 0 x

(b)

Fig.4. A 4 by 4 DSOM label map during the
training process. (a) is the label map after the
first 30 training iterations. (b) is the label map
after 6000 training iterations.

5. CONCLUDING REMARKS & FUTURE
WORK

In this paper, we proposed an artificial neural network
structure called DSOM for video sequence
learning/recognition. The training approach of DSOM is
a supervised learning algorithm. In this algorithm, we
constructed a temporary label map to supervise the model
learning process. The label map is updated through the
training process. DSOM overcomes the limitations of
traditional SOM and single dynamic neural network, and
inherits the advantages from both of them. Simple video
sequence classification results convinced us some basic
ideas of the DSOM for processing large set of dynamic
sequences.
 In the video sequence learning/recognition experiment,
we did not use any specific model to help the training.
This supports some belief that this system has potential
advantages over many model based recognition systems.
This algorithm also has potential to overcome the
difficulties of a time alignment process in most temporal
sequence recognition systems, and speed up the temporal
sequence recognition. The ordered DSOM is also more

similar to the human brain cortex map than traditional
SOM. It is used on video sequence data in this paper, but
we believe that this method can also be generalized to
some other temporal sequence learning and recognition
tasks.

The future work of this research will include trying
more elaborate dynamic neuron models in the DSOM
construction, and trying more efficient visual feature as
the inputs of the network. We also want to spend some
time testing this method on traditional SOM formation
and compare the speed and formation result of the new
algorithm with the traditional algorithm.

6. REFERENCES

[1] B. Jahne, Digital Image Processing (1995), Springer-Verlag.

[2] C. Tomasi, T. Kanade, “Shape and motion from Image
Streams under Orthography: A Factorization Method”,
International Journal of Computer Vision, 9:2, 137-154 (1992).

[3] ISO/IEC, JTC1/SC29/WG11, Description of core
experiments on coding efficiency in MPEG-4 video, Sept. 1996.

[4] T. Maurer, C. Malsburg, “Tracking and Learning Graphs on
Image Sequences of Faces”, Int. Conf. on Artificial Neural
Networks, Bochum, July 16-19, 1996.

[5] T. Kohonen, “The Self-Organizing Map (SOM)”, Web page
available at http://www.cis.hut.fi/nnrc/som.html.

[6] T. Kohonen, Self-Organizing Maps (1995), Springer.

[7] Simon Haykin, Neural Networks, A Comprehensive
Foundation, 2nd Edition, 1999, Prentice Hall.
[8] J.L.Elman, “Finding Structure in Time”, Cognitive Science,
vol.14, pp.179-211, 1990.
[9] M.C.Mozer, “Neural Net Architectures for Temporal
Sequence Processing”, in A.S.Weigend and N.A.Gershenfeld,
eds., Time Series Prediction: Forecasting the Future and
Understanding the Past, pp. 243-264, Reading, MA: Addison-
Wesley.
[10] J.J.Hopfield, “Neurons, Dynamics and Computation”,
Physics Today, vol. 47, pp.40-46, Februry, 1994.
[11] S.Haykin, B.Van Veen, Signals and Systems, New York :
Wiley, 1998.
[12] M.Hagiwara, “Theoretical Derivation of momentum term
in back-propagation”, International Joint Conference on Neural
Networks, vol. I, pp.682-686, Baltimore.
[13] S.J.Orphanidis, Introduction to Signal Processing,
Prentice-Hall, 1996.

