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ABSTRACT 

 
Information contained in the video sequences is crucial 

for an autonomous robot or a computer to learn and 
respond to its surrounding environment.  In the past, 
robot vision is mainly concentrated on still image 
processing and small “image cube” processing [1]. 
Continuous video sequence learning and recognition is 
rarely addressed in the literature due to its high 
requirement on dynamic processing.  In this paper, we 
propose a novel neural network structure called Dynamic 
Self-Organizing Map (DSOM) for video sequence 
processing.  The proposed technique has been tested on 
real data sets, and the results validate its learning 
/recognition ability. 
 
 
1.  INTRODUCTION 
 

Video sequences contain visual information that a 
robot/computer needs to see the world.  Current computer 
vision research has been mainly focused on static analysis 
of still images, or simple derivatives on video sequences 
[1][2][3][4]. How to process dynamic video sequences 
more naturally is still an open problem in research. 

A video sequence is a typical spatio-temporal signal.  
In general, its processing techniques can be separated into 
two categories, static processing and dynamic processing, 
according to their different time treatment strategy.   

Static video processing (SVP) is a commonly used and 
successful technique [2][3][4].  It processes video based 
on short video segments.   This method is straightforward 
and easy to be analyzed, but it requires buffering the 
whole segment, and costs big memory space.  

Dynamic video processing (DVP) handles a video 
sequence based on its current inputs and past states, but it 
does not need to save many past inputs.  Compared with 
SVP, DVP is not so straightforward.  However it costs 
less memory space than SVP in general, and it is more 
similar to human’s processing strategy. 

The continuity property of a video sequence makes it 
difficult to cut out video segments for static 
comparison/recognition.  Moreover, this property makes it 
difficult to save all data for future reference.  Due to the 
above difficulties, it seems to be more appropriate to use 
DVP instead of SVP for video sequence 
learning/recognition.  

Next, we will present our basic ideas and experiments 
in details.  We hope this presentation can inspire useful 
discussions in this research area.  In section 2, we 
introduce some basic ideas of Kohonen Map and dynamic 
neural network.  Because we will use knowledge from 
these networks to construct DSOM, this section is mainly 
for those readers who are not familiar with these 
structures.  Section 3 gives the detailed construction 
procedure of DSOM and training equations.  It includes 
the most important contents of this paper.  Section 4 is the 
current simulation result of DSOM.  It uses the DSOM’s 
classification map and classification result to lead the 
readers to a more concrete comprehension of this 
technique. Section 5 concludes this paper and discusses 
some future work. 
 
2.  RELATED WORK 
 

In the neural network society, Kohonen Map and 
dynamic neural network are two popular network 
structures for learning.  Both of them have their own big 
advantages for solving specific problems, and have their 
own big disadvantages for processing large set of 
dynamic data. 
 
2.1.  Kohonen Map 
 

The Kohonen Map (or Self-Organizing Map) is an 
algorithm for visualizing and interpreting large high-
dimensional data sets [5].  The map consists of a regular 
grid of processing nodes.  A vector of features through 
high-dimensional observation is associated with every 
processing node.  The algorithm tries to use the restricted 
vector map to represent all available observations with an 



optimal accuracy.  For optimal representation of all 
available observations, the vectors are ordered on the map 
so that similar vectors are close to each other and 
dissimilar vectors are far from each other [5].  This 
representation strategy is analogous to the map 
representation in human’s brain cortex, and proved to be 
effective in many applications [6]. 

The search and organization of the representation 
vectors on the map can be described with the following 
regressive equation, where t =1, 2, 3, … is the step index, 
x is a observation, mi(t) is the vector representation on 
node i at step t, c is the winner index, and hc(x),i is the 
neighborhood updating function [5]. 
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After iterative training process, a SOM will become 

ordered.  An ordered SOM can be used as a classifier, but 
the classification accuracy is not very high in many 
applications.  To increase the classification accuracy, a 
nodal vector refinement stage called Learning Vector 
Quantization (LVQ) must be performed on the ordered 
SOM [1].  At this refinement stage, an input vector is 
picked at random from the input space.  If the class label 
of the input vector and its SOM representation vector 
label agree, the representation vector will move toward 
the direction of the input vector.  Otherwise, the 
representation vector will move away from the input 
vector.  LVQ is a supervised learning process.  It can help 
the ordered SOM to refine its classification boundary and 
improve the classification accuracy.  It has nothing to do 
with the map topology formation process. 
 
2.2.  Dynamic Neural Network 
 

In the traditional McCulloch-Pitts neuron model or 
Rosenblatt’s perceptron, every synapse is considered as a 
weight [7].  With this model, the perceptron output is only 
related to the current input.  That makes it impossible for 
us to use this simple model to capture time variance of the 
signal.  In the real world, a synapse works in a more 
complicated manner.  It has resistance, capacitance, 
transmission chemicals etc. [7]. Equipped with these 
components, a synapse could capture the time variance of 
an input signal.   To simulate a synapse in a more accurate 
way, scientists have developed many dynamic models in 
the past decades [8][9][10].  Among all these proposed 
models, the neural filter model [11] (Fig.1.) is a promising 
one for presentation and application [12]. 

In Fig.1, the whole diagram can be viewed as an 
individual neuron.  All synapses in this neuron model are 
represented by linear filters.  The inputs of these filters are 
connected to the input signals of the neuron.  The outputs 

of these filters are connected to the summation node of 
the neuron as usual.  The summation node and the 
squashing function block are still similar to their 
representations in most other neuron models.  The linear 
digital filters for every synapse can be IIR filters or FIR 
filters [13].  The parameters of these filters can be trained 
through the popular Back-Propagation training algorithm. 
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Fig.1.  Filter model of an individual neuron 
 
3.  DYNAMIC SOM CONSTRUCTION 
 

From the above descriptions, we know that Kohonen 
Map is good for processing large high-dimensional data 
set [5], and dynamic neural network is good for time 
sequence pattern recognition.  Both of these networks 
have their big advantages.  But their limitations cannot 
permit us to use them separately for dynamic video 
learning and recognition. The limitation of Kohonen Map 
for time sequence processing is caused by the static 
feature vector representation in the map model.  The 
limitation of dynamic neural network is caused by its 
dramatic connection increase for large data set.  In the 
following, we will propose a construction method to 
combine these two networks and inherit the advantages 
from both of them without losing generality. 

The construction of DSOM is to substitute every static-
processing unit in the SOM with a single output dynamic 
neural network.  With this substitution, every SOM node 
will be able to deal with time sequences instead of static 
vectors.  At the same time, we got a huge number of 
dynamic processing units for dealing with large sets of 
time sequences.  

The DSOM map structure is sketched in Fig.2.  In this 
construction, every synapse has three adjustable 
parameters, the input connection, the hidden node 
feedback connection, and the hidden node output 
connection.  The node on the map grid functions as the 
summation node and the squashing block.  The arrow that 
leaves the summation node is an output.  The map grid 
has the same function of the traditional SOM map grid, 
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and the neighborhood definition is also similar to the 
original SOM. 
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Fig.2.  DSOM Diagram 
 

The formation of DSOM can be separated into three 
distinctive stages.  These stages are the competitive stage, 
the learning stage, and the re-labeling stage.  In the 
competitive stage, the input time sequence is tried on all 
map nodes.  With a vector sequence input, every node 
will output a one-dimensional sequence as the response.  
All output sequences of the map nodes will be integrated 
separately.  The node which has the highest output 
integral in all map nodes will be chosen as the winner of 
the map.  The node which has the lowest output integral 
in all map nodes will be chosen as the loser of the map.  
For the simple construction we present here, the 
competitive process can be described with the following 
equations: 
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where x is the input, s is the output of the digital filter, w1 
is the connection weight from the input to the hidden 
node, w2 is the hidden node feedback connection weight, 

w3 is the connection weight from the filter output to the 
summation node, v is the summation of the digital filter 
outputs, y is the squashed value of v, I is the integral value 
of y in the time domain, n is the time step, l is the total 
length of the input sequence, m is the dimension of the 
input vector at one time step.  w1, w2, w3 are different for 
different connections.  The relation of these variables can 
be viewed in Fig.3. 

The learning stage follows the competitive stage. At 
this stage, the winner’s label1 will be compared with the 
input sequence label.  If the two class labels agree, the 
desired nodal output sequence2 will be set to constant 1 
for all map nodes.  Then the map nodes will be trained 
with back-propagation algorithm based on the input 
sequence and the desired output sequence.  The learning 
rates for different map nodes are different.  The winner 
node will have the highest learning rate in all map nodes.  
Other map nodes will have lower learning rates based on 
their distance from the winner.  The farther the distance to 
the winner, the lower the learning rate.  Learning rate 
change is controlled by a neighborhood function.  The 
width of the neighborhood function will shrink as the map 
training iteration number grows.  Usage of this 
neighborhood function is very similar to that in the 
ordinary SOM approach.  The learning process is 
controlled by equations 7-13. 
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In equations 7-13, γ is a combined learning rate, t is the 

time, η is the time varying learning rate, h is the 
neighborhood function, α is the learning moment 
constant, δo is the local gradient at the neuron output, δh is 
the local gradient at a hidden node of the neuron, other 
variables are defined in equations 3-6.  η(t) is a positive 
real value.  It decreases gradually as the time passes.  
“h(t)” is a neighborhood function, whose width will 
decrease as the time increases. 
                                                           
1 Input sequence label is its class name.  Each map node is also labeled 
with a class name or “unused”.  See the following re-labeling stage for 
detail. 
2 Each node is a dynamic neuron model.  It outputs a time sequence for 
every time sequence input.  The expected/desired time sequence output 
can be set to constant -1 or 1 sequence.  We back-propagate the 
difference between the real output and the expected output for neuron 
model training on every map node. 
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After we train the map based on the winner’s 
neighborhood, we train the map based on the loser’s 
neighborhood.  The training process follows the same 
equations as the winner-centered training.  When the input 
label and the loser label agree, set the desired output to 1.  
Otherwise, set the desired output to –1.  The reason for us 
to add the loser centered training is to balance the 
dynamic neuron training.  If we use winner-centered 
training only, we can also get an organized map, but it is 
possible to get a biased output on every processing node. 

The re-labeling step is very simple.  Just pass all 
training data through the trained map, and count firings of 
each class on every node based on the competitive 
equations.  A node is labeled by the class, which has the 
biggest firing count on the node.  Nodes without firing 
will be labeled as “unused”3.  After the re-labeling stage, 
the training process goes back to the competitive stage 
and learning stage again.  The three-stage process is done 
iteratively till the map organization is stable. 

Careful readers may find that this training algorithm is 
somehow similar to the LVQ learning in the SOM 
technique.  The difference between LVQ learning 
algorithm and our algorithm is that LVQ uses a fixed 
label map in its class refining process, but we use a 
changing label map in our organizing stage.  When the 
neighborhood function shrinks to a very small region, our 
algorithm will fix the label map for increasing the training 
speed4. 

The detailed training process of the DSOM can be 
described as follows: 
 
1. Label all map nodes as “unused”. 
2. Set all adjustable connection weights with small 

random numbers. 
3. Input a temporal sequence segment to every node on 

the map.  It does not matter how long the sequence is 
if it is in a reasonable range.  We have sequence 
length from about 40 to 100. 

4. Record the output integral of every map node. 
5. Find the winner node, which has the highest output 

integral among all nodes. 
6. Find the loser node, which has the lowest output 

integral among all nodes. 
7. Compare the sequence label with the winner/loser 

node label.  If the winner is “unused”, set its expected 
output to 1.  If the loser is “unused”, do nothing to the 
map.  If the sequence label is the same as the node 
label, set the expected neuron output to constant 1.  

                                                           
3 How to update “unused” nodes will be explained in detail in the 
following step by step algorithm. 
4 Because the updating rates for neighborhood nodes become very small 
as the neighborhood function shrinks to a very small region, it is 
reasonable to omit the neighborhood nodes’ updating.  After our 
algorithm fixes the label map, it only needs to update one node for every 
input instead of updating all map nodes for every input.  That can greatly 
increase the training speed. 

Otherwise, set the expected neuron output to constant 
–1.  This value is the expected output value for every 
single step.   

8. Use the back-propagation algorithm to train the 
network weights according to the input sequence and 
the expected output value.  The training step size is 
set high for the winner/loser, and gradually decreases 
for remote nodes.  The step size decrease follows the 
ordinary SOM neighborhood function.  The winner-
centered training and the loser-centered training are 
separated. 

9. Pass all training sequences through the map, and re-
label the map according to firing count on every 
node.  Nodes without firing will be marked as 
“unused”. 

10. Go through step3 to step9 till the map is stable. 
11. Fix the label map, and do step 5, 7, 8 without 

considering the loser and unused nodes till the map is 
stable. 

 
4.  SIMULATION RESULTS 
 

For testing the learning ability of DSOM, we tried this 
model with some real video sequences.  These video 
sequences are generated with mouse click on the screen.  
The paths of these video sequences reflect the writing 
procedure of 10 digits (0-9).  The test/training data set has 
10 classes.  Each class has 10-16 noisy samples for 
training and testing respectively. 

Before we process the digit sequences with DSOM, all 
of them are normalized to 9 by 9 frame size.  We then 
project these 9 by 9 frame horizontally and vertically to 
produce an 18-element feature vector.  Let p and q be the 
indices of horizontal and vertical axes.  If the writing path 
passes point (p,q) at time t, the input vector at time t will 
be [x(0), …, x(i), …, x(17)]  with x(p) =1, and x(9+q)=1, 
and x(i)=-1 for i≠p or i≠9+q.  Interested readers can also 
try other features as the network inputs. 

A 4x4 DSOM for the classification task is constructed 
with every processing unit having 18 inputs, 18 hidden 
units, and 1 output. The digital filters we used in every 
processing node are simple first order IIR filters.  The 
neighborhood function we used for training is a 2D 
Gaussian function.    Training/testing procedure is just as 
we described before.  Fig.4. gives a typical training result 
(label map) of our experiment. 

The numbers in the label map are class label number 
(0-9 correspond to digits 0-9.  “x” corresponds to 
“unused”.).  At the beginning of the training process, most 
sequences keep on firing on a small number of neurons.  
As training iteration number goes up, sequence firings 
spread across the map, and gradually concentrate on their 
own centers.   We can clearly notice the class grouping 
effect on the map after 6000 iterations of training.  The 
correct classification rate with our examples was around 



60% to 70%.  In a detailed firing distribution map, we can 
find that some 9s are mis-classified as 1 and vise versa, 6 
and 0 are also difficult to be separated clearly.  
Considering that we only use a very simple neuron model 
on every node, this is already an amazing result. 
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Fig.4. A 4 by 4 DSOM label map during the 
training process.  (a) is the label map after the 
first 30 training iterations.  (b) is the label map 
after 6000 training iterations. 
 

5.  CONCLUDING REMARKS & FUTURE 
WORK 
 

In this paper, we proposed an artificial neural network 
structure called DSOM for video sequence 
learning/recognition.  The training approach of DSOM is 
a supervised learning algorithm.  In this algorithm, we 
constructed a temporary label map to supervise the model 
learning process.  The label map is updated through the 
training process.  DSOM overcomes the limitations of 
traditional SOM and single dynamic neural network, and 
inherits the advantages from both of them.  Simple video 
sequence classification results convinced us some basic 
ideas of the DSOM for processing large set of dynamic 
sequences. 
 In the video sequence learning/recognition experiment, 
we did not use any specific model to help the training. 
This supports some belief that this system has potential 
advantages over many model based recognition systems.  
This algorithm also has potential to overcome the 
difficulties of a time alignment process in most temporal 
sequence recognition systems, and speed up the temporal 
sequence recognition.  The ordered DSOM is also more 

similar to the human brain cortex map than traditional 
SOM.  It is used on video sequence data in this paper, but 
we believe that this method can also be generalized to 
some other temporal sequence learning and recognition 
tasks. 

The future work of this research will include trying 
more elaborate dynamic neuron models in the DSOM 
construction, and trying more efficient visual feature as 
the inputs of the network.  We also want to spend some 
time testing this method on traditional SOM formation 
and compare the speed and formation result of the new 
algorithm with the traditional algorithm. 
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