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ABSTRACT 
Web services designed for human users are being abused 
by computer programs (bots). The bots steal thousands of 
free email accounts in a minute, participate in online polls 
to skew results, and irritate people in chat rooms. These 
real-world issues have recently generated a new research 
area called Human Interactive Proofs (HIP), whose goal is 
to defend web services from malicious attacks by 
differentiating bots from human users. For a HIP challenge 
to be effective, it needs to be both easy for human and 
robust against bots attacks. Recently, there is a new HIP 
design which is based on telling time from a clock face.  
This is a very innovative idea and quite easy for human to 
pass.  However, its robustness to attacks needs verification. 
In this paper, we present an algorithm that can break the 
clock face HIP at 87.4%.  

1. INTRODUCTION 

Web services are increasingly becoming part of people’s 
everyday life.  For example, we use free email accounts to 
send and receive emails; we use online polls to gather 
people’s opinion; and we use chat rooms to socialize with 
others. But all these Web services designed for human use 
are being abused by computer programs (bots). Malicious 
programmers have designed bots to register thousands of 
free email accounts every minute. Bots have been used to 
cast votes in online polls. Chat rooms and online shopping 
are being abused by bots as well [1][3]. 

The above real-world issues have recently generated a new 
research area called Human Interactive Proofs (HIP), whose 
goal is to defend services from malicious attacks by 
differentiating bots from human users. The first idea related 
to HIP can be traced back to Naor who wrote an 
unpublished note in 1996 [8], and the first HIP system in 
action was developed in 1997 by researchers at Alta Vista 
[2].  After that, CMU and PARC actively developed several 
HIPs [1][3][4].  

The CMU team so far has been one of the most active 
teams in HIP, and we highly recommend readers to visit 
their web site at http://www.captcha.net. One of the HIPs 
they developed is called Gimpy. Gimpy picks seven random 
words out of a dictionary, distorts them and renders them to 
users. The user needs to recognize three out of the seven 

words to prove that he or she is a human user. The CMU 
team also developed an easier version, EZ Gimpy, which is 
currently used at Yahoo’s website. 

Before any HIP can be put into practice, it has to be very 
easy for human to use and extremely robust to attacks.  A 
set of detailed HIP design criteria is discussed in [10]. So 
far, most of the existing HIPs have been based on distorted 
text, e.g., [1][2][3][4]. The assumption is that human can 
read distorted text but it is hard for a machine (bots) to read.  
The text-based HIPs were successful until Berkeley 
researchers proposed a new object recognition algorithm in 
July 2003 which breaks EZ Gimpy at 92% and Gimpy at 
33% [7].  Researchers then started to explore non-text HIPs.  
One of the most noticeable new HIPs is the clock face HIP 
(CFHIP) [6].  It satisfies many of the criteria of being a 
promising HIP [10].  For example, while texts are different 
across alphabets (Hebrew, Arabic, English, etc.), clock is 
culturally universal, which saves significant localization 
effort in practice. CFHIP works as follows. Per each user 
request, it automatically synthesizes an image with a clock 
face embedded in a cluttered background. The user is asked 
to first find the clock face and then enter the time. If the 
user can correctly enter the time, CFHIP concludes the user 
is a human; otherwise, the user is a machine. 

HIP is a unique research area in that it creates a win-win 
situation.  If attackers cannot defeat a HIP algorithm, that 
algorithm can be used to defend Web services. On the other 
hand, if attackers defeat a HIP algorithm, that means they 
have solved a hard AI problem, thus advancing the AI 
research.  As vision researchers, we take up the challenge of 
defeating the CFHIP.  The rest of the paper is organized as 
follows. In Section 2, we describe the detailed algorithm on 
how to break the CFHIP at 87.4%. In Section 3, we present 
experimental results using 1,000 CFHIP challenges. We 
give concluding remarks in Section 4. 

2. ALGORITHM TO DEFEAT CFHIP 

To confuse bots, CFHIP images are constructed with 
complex background.  For example images, see Figure 2 
and see http://www.ifp.uiuc.edu/~zzhang6/image.zip. The 
location, shape, color, and intensity of the clock faces are 
all randomized in different images. In order to read time 
from a clock face, we need to 1). first detect the location of 



the clock face; 2). then detect clock center, tick marks, and 
clock hands; and 3) finally read the time. In this section, we 
present detailed algorithm to achieve this goal. 

2.1 AdaBoost learning for clock detection 

Clock detection in clutter background can be defined as a 
clock/non-clock classification problem. A clock detector is 
learned from clock/non-clock training examples using 
AdaBoost algorithm. AdaBoost has been very successful in 
object/pattern recognition.  For example, it achieves one of 
the best face detection results [12]. The clock detection task 
is the following: given an input image, sub-windows at all 
locations and scales are scanned, and then classified into 
clock and non-clock objects. 

For two class problem, AdaBoost can be described as 
follows. Let a set of N labeled training examples be 

),(,),,( 11 NN yxyx L , where }1,1{ −+∈iy  is the class label 

associated with example ix . For clock detection, ix  is an 

image sub-window of a fixed size (e.g, 60x60 pixels) 
containing an instance of the clock )1( +=iy  or non-

clock )1( −=iy  pattern. In the notion of RealBoost (a real-

valued version of AdaBoost as opposed to the original 
discrete one, see Figure 1), a stronger classifier is a linear 
combination of M weak classifiers. 
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where ℜ∈)(xhm
 are the weak classifiers. The class label for 

a test x is obtained as H(x) = sign [HM(x)] (an error occurs 
when yxH ≠)( ) while the magnitude |HM(x)| indicates the 

confidence. 

In boosting learning [5][11], each example ix is associated 

with a weight 
iw , and the weights are updated dynamically 

using a multiplicative rule according to the errors in 
previous learning so that more emphasis is placed on those 
examples which are erroneously classified by the weak 
classifiers learned previously. This way, the new weak 
classifiers will pay more attention to those examples. The 
stronger classifier is obtained as a proper linear 
combination of the weak classifiers. 

The “margin” of an example (x, y) achieved by H(x) on the 
training examples can be defined as yH(x). This can be 
considered as a measure of the confidence of the h’s 
prediction. The following criterion measures the bound on 
classification error [11] 
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AdaBoost construct h(x) by stage-wise minimization of Eq. 
2. Given the current ∑ −
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for the new strong classifier 
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is the one which leads to the minimum cost 
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Figure 2 shows example CFHIP detection results using 
AdaBoost algorithm. 

     
Figure 2: Example CFHIP challenges and detection results 

using the AdaBoost algorithm 

2.2 Clock feature localization and time telling  
Once the clock is detected in the image, we next need to 
estimate the clock center for further analysis. To avoid the 
effect of clock hands on clock center estimation, the inner 
part (33%) of the detected window is masked out (Figure 3 

(a)  (b)  (c)  

   (d)    (e) 

Figure 3: Clock center estimation: (a) Cropped clock 
region. (b) Masking out inner part of the detected clock 
region. (c) Binarization result. (d) Projection along 
vertical direction. (e) Projection along horizontal 
direction. 
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Figure 1:  RealBoost Algorithm.  



(b)). Then the image is binarized using an adaptive 
threshold, learned from the training samples (Figure 3 (c)). 
If we build histograms along both horizontal and vertical 
directions, the clock center has peaks in both histograms 
(Figure 3 (d) and (e)).   The intersection of the peaks gives 
us the location of the clock center. 

Because the clock face is an ellipse instead of a circle, we 
also need to locate the clock tick marks. We divide the tick 
marks into two classes: block shapes and point shapes. We 
give the block shapes index numbers 3, 6, 9 and 12 and the 
index numbers for point shapes are 1, 2, 4, 5, 7, 8, 10 and 
11.  Block shapes 3, 6, 9 and 12 are detected at first. After 
estimating the center of the clock, the four candidate 
regions of 3, 6, 9 and 12 are cropped out along the vertical 
and horizontal directions of the clock center (Figure 4 (b)). 

 
              (a)                     (b)                     (c)                  (d)  

Figure 4. Detection of 3, 6, 9, 12 clock feature points: (a) 
Crop the clock region. (b) Crop the clock sub-regions.  (c) 

Binarization result. (d) Detected block shape features. 

Because in the candidate regions block shapes are darker 
than the background and the number of pixels that belong to 
the block shape features is almost fixed, an adaptive 
threshold is chosen using Eq.5: 
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where )(ih  is the histogram bin i , which represents the 

number of pixels in the image that have intensity value i . 
θ  is the threshold of the number of pixels which belongs to 
the block shapes and is learned from training samples. The 
segmentation result is shown in Figure 4 (c). A rectangle 
template is then applied in each small region, and the 
location with maximum correlation with the template is 
consider as the block shape location (see Figure 4 (d)). 
Point shapes, e.g., 2, 4, 5, 7, 8, 10 and 11, can be detected 
in a similar way. 

After the previous steps, we already knew the location of 
the clock tick marks.  If we mask out these tick marks, only 
the two clock hands will be left in the clock region (Figure 
5 (a)). An adaptive threshold is again learned from training 
examples and is used to segment out the clock hands 
(Figure 5 (b)). A median filter is used to remove noise and 
the result is shown in Figure 5 (c).  So far, we have 
obtained the clock center, clock tick marks and the clock 
hands. Lines are drawn between the clock center and the 
tick marks for time analysis (Figure 5 (d)). 

   
 (a)                 (b)                (c)             (d)  

Figure 5: Hands segmentation and time analysis: (a) Mask 
out clock tick marks. (b) Segmentation result. (c) Noise 
removal using median filter. (d) Lines between clock center 
and tick marks.  

The only step left now is to distinguish the minute hand and 
the hour hand. We observe from the CFHIP training 
examples that: 

(1) The minute hand is always along the direction between 
the clock center and one of the twelve clock features. 

(2) The minute hand is longer but thinner than the hour 
hand. 

Using the above observations, we can find the direction, 
which has the largest number of black pixels among the 
twelve directions, as the minute hand direction. Once we 
find the minute hand direction, it will provide further 
information for estimating the hour hand. For example, if 
the minute hand points to clock feature 12 (Figure 6 (a)), 
then the hour hand must be along one of the twelve lines 
connecting clock center and tick marks.  Similarly, if the 
minute hand points to clock feature 6 (Figure 6 (b)), then 
the hour hand must be at the middle of any two adjacent 
lines.  Similar rules can be drawn when the minute hand 
points to feature 9 (Figure 6 (c) and (d)), and any other 
features. 

 
             (a)                   (b)                (c)                 (d)    

Figure 6: Some clock hands segmentation results. 

3. EXPERIMENTAL RESULTS 

1,000 CFHIP images are collected from the web [6], 300 
for training and 700 for testing. The clock locations of the 
300 training images are hand labeled for the Adaboost 
classifier. The 300 training images generate 300 clock 
training examples. The non-clock training examples are 

    

    
Figure 7: Clock training examples (top row) and 

 non-clock training examples (bottom row). 



generated from the background using the bootstrap method 
[9], and a total of 1,200 non-clock training examples are 
obtained. Both clock and non-clock training examples are 
then normalized to 60*60 pixels (see Figure 7).  We next 
report experimental results. 

To achieve real-time speed, we use 4 types of Harr-wavelet-
like features for clock/non-clock classification (see Figure 8) 
[12]. We achieve 200 ms for detecting a clock running in 
Matlab. Given that the base resolution of the detector is 
60x60, changing the size and location of the four types of 
box features will generate 4,626,060 features. If we restrict 
the height and width of a box to be multiples of 2, we can 
decrease the number of candidate features to 327,299.  

 
          (a)                       (b)                   (c)                      (d) 

Figure 8: Four types of features. 

Using AdaBoost algorithm, the 40 most important features 
were selected automatically from the 327,299 candidate 
features. The clock detector is the linear combination of 
these selected features. The first two selected features are 
shown in Figure 9. It is interesting to observe that even 
though the clocks are of different sizes, shapes and colors, 
and embedded in different background, Adaboost is able to 
learn the first two most important features to be the block 
shapes 3 and 9. If the clock face were an irregular shape 
instead of an ellipse, it would have been harder to break the 
CFHIP.   

We apply the clock detector on the 700 testing images. For 

each image, the clock detector scans across the image at 
multiple scales and locations. Scaling is achieved by scaling 
the detectors themselves, rather than scaling the image [12]. 
We scale the detectors using a factor of 1.25. The sub-
window with maximum value )(xH M

 (Eq.1) is detected as 

the clock region. Among 700 images, clocks in 632 images 
are detected correctly. The detection rate is 90.3%. From 
these 632 corrected detected clocks, our system correctly 
tells the time for 612 of them. The overall time recognition 
rate of our system is therefore 612/700 = 87.4%. Figure 10 
shows an example of correctly recognized time.  

There are two types of failures: failure of clock detector and 
failure of minute/hour hands classification. An example 
failure case is shown in Figure 11.  Our algorithm mistakes 
the minute hand as the hour hand, and estimates the time to 
be 9:00 instead of 11:45. 

4. CONCLUSIONS 

In this paper, we motivated the importance of a new 
research area called HIP.  We first briefly reviewed existing 
HIPs with focus on the CFHIP, and then presented an 
algorithm that can defeat CFHIP at 87.4%.  We envision 
the battle between the two sides of HIP will advance the AI 
research. 
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Figure 9: The first two selected features. 

 

Figure 10: telling the time: (a) Original image. (b) 
Segmentation result. (c) Synthesized clock based on the 
time told by the system. 

               (a)                                   (b)                              (c)  

Figure 11. An example failure case: fail to discriminate 
hour and minute hand: (a) Original image. (b) 
Segmentation result. (c) Synthesized clock based on the 
time told by the system.  


