
Breaking the Clock Face HIP

Zhenqiu Zhang †, Yong Rui‡, Thomas Huang † and Cem Paya‡
†Beckman Inst. for Advance Technology

University of Illinois at Urbana-Champaign
{zzhang6, huang}@ifp.uiuc.edu

‡Microsoft Corporation
Redmond, WA 98052

{yongrui, cemp}@microsoft.com

ABSTRACT
Web services designed for human users are being abused
by computer programs (bots). The bots steal thousands of
free email accounts in a minute, participate in online polls
to skew results, and irritate people in chat rooms. These
real-world issues have recently generated a new research
area called Human Interactive Proofs (HIP), whose goal is
to defend web services from malicious attacks by
differentiating bots from human users. For a HIP challenge
to be effective, it needs to be both easy for human and
robust against bots attacks. Recently, there is a new HIP
design which is based on telling time from a clock face.
This is a very innovative idea and quite easy for human to
pass. However, its robustness to attacks needs verification.
In this paper, we present an algorithm that can break the
clock face HIP at 87.4%.

1. INTRODUCTION

Web services are increasingly becoming part of people’s
everyday life. For example, we use free email accounts to
send and receive emails; we use online polls to gather
people’s opinion; and we use chat rooms to socialize with
others. But all these Web services designed for human use
are being abused by computer programs (bots). Malicious
programmers have designed bots to register thousands of
free email accounts every minute. Bots have been used to
cast votes in online polls. Chat rooms and online shopping
are being abused by bots as well [1][3].

The above real-world issues have recently generated a new
research area called Human Interactive Proofs (HIP), whose
goal is to defend services from malicious attacks by
differentiating bots from human users. The first idea related
to HIP can be traced back to Naor who wrote an
unpublished note in 1996 [8], and the first HIP system in
action was developed in 1997 by researchers at Alta Vista
[2]. After that, CMU and PARC actively developed several
HIPs [1][3][4].

The CMU team so far has been one of the most active
teams in HIP, and we highly recommend readers to visit
their web site at http://www.captcha.net. One of the HIPs
they developed is called Gimpy. Gimpy picks seven random
words out of a dictionary, distorts them and renders them to
users. The user needs to recognize three out of the seven

words to prove that he or she is a human user. The CMU
team also developed an easier version, EZ Gimpy, which is
currently used at Yahoo’s website.

Before any HIP can be put into practice, it has to be very
easy for human to use and extremely robust to attacks. A
set of detailed HIP design criteria is discussed in [10]. So
far, most of the existing HIPs have been based on distorted
text, e.g., [1][2][3][4]. The assumption is that human can
read distorted text but it is hard for a machine (bots) to read.
The text-based HIPs were successful until Berkeley
researchers proposed a new object recognition algorithm in
July 2003 which breaks EZ Gimpy at 92% and Gimpy at
33% [7]. Researchers then started to explore non-text HIPs.
One of the most noticeable new HIPs is the clock face HIP
(CFHIP) [6]. It satisfies many of the criteria of being a
promising HIP [10]. For example, while texts are different
across alphabets (Hebrew, Arabic, English, etc.), clock is
culturally universal, which saves significant localization
effort in practice. CFHIP works as follows. Per each user
request, it automatically synthesizes an image with a clock
face embedded in a cluttered background. The user is asked
to first find the clock face and then enter the time. If the
user can correctly enter the time, CFHIP concludes the user
is a human; otherwise, the user is a machine.

HIP is a unique research area in that it creates a win-win
situation. If attackers cannot defeat a HIP algorithm, that
algorithm can be used to defend Web services. On the other
hand, if attackers defeat a HIP algorithm, that means they
have solved a hard AI problem, thus advancing the AI
research. As vision researchers, we take up the challenge of
defeating the CFHIP. The rest of the paper is organized as
follows. In Section 2, we describe the detailed algorithm on
how to break the CFHIP at 87.4%. In Section 3, we present
experimental results using 1,000 CFHIP challenges. We
give concluding remarks in Section 4.

2. ALGORITHM TO DEFEAT CFHIP

To confuse bots, CFHIP images are constructed with
complex background. For example images, see Figure 2
and see http://www.ifp.uiuc.edu/~zzhang6/image.zip. The
location, shape, color, and intensity of the clock faces are
all randomized in different images. In order to read time
from a clock face, we need to 1). first detect the location of

the clock face; 2). then detect clock center, tick marks, and
clock hands; and 3) finally read the time. In this section, we
present detailed algorithm to achieve this goal.

2.1 AdaBoost learning for clock detection

Clock detection in clutter background can be defined as a
clock/non-clock classification problem. A clock detector is
learned from clock/non-clock training examples using
AdaBoost algorithm. AdaBoost has been very successful in
object/pattern recognition. For example, it achieves one of
the best face detection results [12]. The clock detection task
is the following: given an input image, sub-windows at all
locations and scales are scanned, and then classified into
clock and non-clock objects.

For two class problem, AdaBoost can be described as
follows. Let a set of N labeled training examples be

),(,),,(11 NN yxyx L , where }1,1{ −+∈iy is the class label

associated with example ix . For clock detection, ix is an

image sub-window of a fixed size (e.g, 60x60 pixels)
containing an instance of the clock)1(+=iy or non-

clock)1(−=iy pattern. In the notion of RealBoost (a real-

valued version of AdaBoost as opposed to the original
discrete one, see Figure 1), a stronger classifier is a linear
combination of M weak classifiers.

∑
=

=
M

m
mM xhxH

1

)()(

 (1)

where ℜ∈)(xhm
 are the weak classifiers. The class label for

a test x is obtained as H(x) = sign [HM(x)] (an error occurs
when yxH ≠)() while the magnitude |HM(x)| indicates the

confidence.

In boosting learning [5][11], each example ix is associated

with a weight
iw , and the weights are updated dynamically

using a multiplicative rule according to the errors in
previous learning so that more emphasis is placed on those
examples which are erroneously classified by the weak
classifiers learned previously. This way, the new weak
classifiers will pay more attention to those examples. The
stronger classifier is obtained as a proper linear
combination of the weak classifiers.

The “margin” of an example (x, y) achieved by H(x) on the
training examples can be defined as yH(x). This can be
considered as a measure of the confidence of the h’s
prediction. The following criterion measures the bound on
classification error [11]

)()()())((
xHy

i

xyH
w

ieeExHJ
−− ∑== (2)

AdaBoost construct h(x) by stage-wise minimization of Eq.
2. Given the current ∑ −

=− = 1

11)()(
M

m mM xhxH , the best)(xhM

for the new strong classifier

)()()(1 xhxHxH MMM += −
 (3)

is the one which leads to the minimum cost

))()((min 1 xhxHJrgah M
h

M
+

− +=
+

 (4)

Figure 2 shows example CFHIP detection results using
AdaBoost algorithm.

Figure 2: Example CFHIP challenges and detection results

using the AdaBoost algorithm

2.2 Clock feature localization and time telling
Once the clock is detected in the image, we next need to
estimate the clock center for further analysis. To avoid the
effect of clock hands on clock center estimation, the inner
part (33%) of the detected window is masked out (Figure 3

(a) (b) (c)

 (d) (e)

Figure 3: Clock center estimation: (a) Cropped clock
region. (b) Masking out inner part of the detected clock
region. (c) Binarization result. (d) Projection along
vertical direction. (e) Projection along horizontal
direction.

0.(Input)
 (1) Training examples)},(),...,,{(11 NN yxyxz = ,
 where baN += ; of which a examples have 1+=iy
 and b examples have 1−=iy ;
 (2) The number M of weak classifiers to be combined;
1.(Initialization)
 awi 2/1= for those examples with 1+=iy
 bwi 2/1= for those examples with 1−=iy
2.(Forward Inclusion)
 For :,...,1 Mm =

(1) Choose mh according to Eq.4:

(2) Update)](exp[)()(
imi

m
i

m
i xhyww −← ,and

Normalize to 1)(=∑i

m
iw ;

3.(Output)

])([)(
1∑ =

= M

m m xhSignxH

Figure 1: RealBoost Algorithm.

(b)). Then the image is binarized using an adaptive
threshold, learned from the training samples (Figure 3 (c)).
If we build histograms along both horizontal and vertical
directions, the clock center has peaks in both histograms
(Figure 3 (d) and (e)). The intersection of the peaks gives
us the location of the clock center.

Because the clock face is an ellipse instead of a circle, we
also need to locate the clock tick marks. We divide the tick
marks into two classes: block shapes and point shapes. We
give the block shapes index numbers 3, 6, 9 and 12 and the
index numbers for point shapes are 1, 2, 4, 5, 7, 8, 10 and
11. Block shapes 3, 6, 9 and 12 are detected at first. After
estimating the center of the clock, the four candidate
regions of 3, 6, 9 and 12 are cropped out along the vertical
and horizontal directions of the clock center (Figure 4 (b)).

 (a) (b) (c) (d)

Figure 4. Detection of 3, 6, 9, 12 clock feature points: (a)
Crop the clock region. (b) Crop the clock sub-regions. (c)

Binarization result. (d) Detected block shape features.

Because in the candidate regions block shapes are darker
than the background and the number of pixels that belong to
the block shape features is almost fixed, an adaptive
threshold is chosen using Eq.5:

θ≤∑
=

T

i

ih
1

)(θ>∑
+

=

1

1

)(
T

i

ih

(5)

where)(ih is the histogram bin i , which represents the

number of pixels in the image that have intensity value i .
θ is the threshold of the number of pixels which belongs to
the block shapes and is learned from training samples. The
segmentation result is shown in Figure 4 (c). A rectangle
template is then applied in each small region, and the
location with maximum correlation with the template is
consider as the block shape location (see Figure 4 (d)).
Point shapes, e.g., 2, 4, 5, 7, 8, 10 and 11, can be detected
in a similar way.

After the previous steps, we already knew the location of
the clock tick marks. If we mask out these tick marks, only
the two clock hands will be left in the clock region (Figure
5 (a)). An adaptive threshold is again learned from training
examples and is used to segment out the clock hands
(Figure 5 (b)). A median filter is used to remove noise and
the result is shown in Figure 5 (c). So far, we have
obtained the clock center, clock tick marks and the clock
hands. Lines are drawn between the clock center and the
tick marks for time analysis (Figure 5 (d)).

 (a) (b) (c) (d)

Figure 5: Hands segmentation and time analysis: (a) Mask
out clock tick marks. (b) Segmentation result. (c) Noise
removal using median filter. (d) Lines between clock center
and tick marks.

The only step left now is to distinguish the minute hand and
the hour hand. We observe from the CFHIP training
examples that:

(1) The minute hand is always along the direction between
the clock center and one of the twelve clock features.

(2) The minute hand is longer but thinner than the hour
hand.

Using the above observations, we can find the direction,
which has the largest number of black pixels among the
twelve directions, as the minute hand direction. Once we
find the minute hand direction, it will provide further
information for estimating the hour hand. For example, if
the minute hand points to clock feature 12 (Figure 6 (a)),
then the hour hand must be along one of the twelve lines
connecting clock center and tick marks. Similarly, if the
minute hand points to clock feature 6 (Figure 6 (b)), then
the hour hand must be at the middle of any two adjacent
lines. Similar rules can be drawn when the minute hand
points to feature 9 (Figure 6 (c) and (d)), and any other
features.

 (a) (b) (c) (d)

Figure 6: Some clock hands segmentation results.

3. EXPERIMENTAL RESULTS

1,000 CFHIP images are collected from the web [6], 300
for training and 700 for testing. The clock locations of the
300 training images are hand labeled for the Adaboost
classifier. The 300 training images generate 300 clock
training examples. The non-clock training examples are

Figure 7: Clock training examples (top row) and

 non-clock training examples (bottom row).

generated from the background using the bootstrap method
[9], and a total of 1,200 non-clock training examples are
obtained. Both clock and non-clock training examples are
then normalized to 60*60 pixels (see Figure 7). We next
report experimental results.

To achieve real-time speed, we use 4 types of Harr-wavelet-
like features for clock/non-clock classification (see Figure 8)
[12]. We achieve 200 ms for detecting a clock running in
Matlab. Given that the base resolution of the detector is
60x60, changing the size and location of the four types of
box features will generate 4,626,060 features. If we restrict
the height and width of a box to be multiples of 2, we can
decrease the number of candidate features to 327,299.

 (a) (b) (c) (d)

Figure 8: Four types of features.

Using AdaBoost algorithm, the 40 most important features
were selected automatically from the 327,299 candidate
features. The clock detector is the linear combination of
these selected features. The first two selected features are
shown in Figure 9. It is interesting to observe that even
though the clocks are of different sizes, shapes and colors,
and embedded in different background, Adaboost is able to
learn the first two most important features to be the block
shapes 3 and 9. If the clock face were an irregular shape
instead of an ellipse, it would have been harder to break the
CFHIP.

We apply the clock detector on the 700 testing images. For

each image, the clock detector scans across the image at
multiple scales and locations. Scaling is achieved by scaling
the detectors themselves, rather than scaling the image [12].
We scale the detectors using a factor of 1.25. The sub-
window with maximum value)(xH M

 (Eq.1) is detected as

the clock region. Among 700 images, clocks in 632 images
are detected correctly. The detection rate is 90.3%. From
these 632 corrected detected clocks, our system correctly
tells the time for 612 of them. The overall time recognition
rate of our system is therefore 612/700 = 87.4%. Figure 10
shows an example of correctly recognized time.

There are two types of failures: failure of clock detector and
failure of minute/hour hands classification. An example
failure case is shown in Figure 11. Our algorithm mistakes
the minute hand as the hour hand, and estimates the time to
be 9:00 instead of 11:45.

4. CONCLUSIONS

In this paper, we motivated the importance of a new
research area called HIP. We first briefly reviewed existing
HIPs with focus on the CFHIP, and then presented an
algorithm that can defeat CFHIP at 87.4%. We envision
the battle between the two sides of HIP will advance the AI
research.

5. REFERENCES
[1] Ahn, L., Blum, M., and Hopper, N. J., Telling humans and

computers apart (Automatically) or How lazy cryptographers do AI,
Technical Report CMU-CS-02-117, February, 2002.

[2] AltaVista’s Add URL site: altavista.com/sites/addurl/newurl.
[3] Baird, H.S., and Popat, K., Human Interactive Proofs and Document

Image Analysis,'' Proc., 5th IAPR Workshop on Document Analysis
Systems, Princeton, NJ, 2002.

[4] Chew, M. and Baird, H. S., BaffleText: a Human Interactive Proof,''
Proc., 10th IS&T/SPIE Document Recognition & Retrieval Conf.,
Santa Clara, CA, January 22, 2003.

[5] Friedman, J., Hastie, T., Tibshirani, R. Additive logistic regression:
a statistical view of boosting. Technical report, Department of
Stastics, Sequoia Hall, Stanford Univerity (1998).

[6] Izymail, http://izymail.com/imo_getstarted.aspx.
[7] Mori, G. and Malik, J., Recognizing objects in adversarial clutter:

breaking a visual CAPTCHA, Proc. of IEEE CVPR, 2003.
[8] Naor, M., Verification of a human in the loop or identification via

the Turing test, unpublished notes, September 13, 1996.
[9] Rowley, H., Baluja, S., and Kanade, T., “Neural Network-based face

detection”. CVPR, 1996.
[10] Rui, Y. and Liu, Z., ARTiFACIAL: Automated Reverse Turing test

using FACIAL features, ACM/Springer Multimedia Systems Journal,
Spring 2004.

[11] Schapire, R.E., and Singer, Y., Improved boosting algorithms using
confidence-rated predictions. Machine Learning, 37(3):297-336,
December 1999.

[12] Viola, P., and Jones, M.J., “Robust real-time object detection”,
Technical Report Series, Compaq Cambridge Research Laboratory,
CRL 2001/01, Feb, 2001.

[13] Zhang, Z., MingJing Li, Stan Li and HongJiang Zhang, “Multiview
Face Detection with FloatBoost”, WACV, 2002.

Figure 9: The first two selected features.

Figure 10: telling the time: (a) Original image. (b)
Segmentation result. (c) Synthesized clock based on the
time told by the system.

 (a) (b) (c)

Figure 11. An example failure case: fail to discriminate
hour and minute hand: (a) Original image. (b)
Segmentation result. (c) Synthesized clock based on the
time told by the system.

