
PASS: PEER-AWARE SILENCE SUPPRESSION FOR INTERNET VOICE CONFERENCES
Xun Xu †, Li-wei He‡, Dinei Florêncio‡, and Yong Rui‡

† Beckman Institute,
University of Illinois at Urbana-Champaign,

Urbana, IL 61801
xunxu@ifp.uiuc.edu

‡ Microsoft Research,
One Microsoft Way,

Redmond, WA 98052-6399
{lhe, dinei, yongrui}@microsoft.com

ABSTRACT

A novel tandem-free solution for multiparty VoIP conferences
called PASS (Peer-Aware Silence Suppression) is presented.
Similar to traditional tandem-free solutions, PASS introduces a
limit on the number of concurrent speakers in a conference. But in
contrast to traditional solutions, PASS silence suppression and
speaker selection are completely distributed, running on each
client. No speaker selection is performed at the bridge at all. This
configuration leads to better scalability, lower bandwidth
occupation and jitter buffer delay, and higher compatibility with a
wide variety of network topologies. The key component of PASS,
distributed silence suppression and speaker selection, is realized
through a robust approach proposed in this paper. Based on a voice
activity measure derived using machine learning techniques, this
approach is able to reliably suppress silence in complex
environments, and perform accurate and transparent speaker
selection as well.

1. INTRODUCTION

Voice over IP (VoIP) is becoming mainstream. This can be
partially attributed to the proliferation of broadband connections,
and the availability of low-cost hardware and software. But
equally important is the fact that most technological challenges
have been addressed. In particular, solutions to minimize delay,
delay jitter, and packet loss have all been extensively researched in
the last several years. As these technologies go from research to
actual products, research effort must concentrate on the next needs
of VoIP technology. One of such needs is high-quality multiparty
voice conference. When migrating to VoIP, a central bridge-based
architecture mimicking PSTN conferencing system seems to be an
obvious design choice. However, various new problems arise
when this design is applied to VoIP: 1) A best-effort packet
network such as the Internet introduces variable delays and packet
losses into the transport process, requiring the bridge to absorb
variable delay by a jitter buffer and include some loss concealment
mechanisms. 2) The central bridge has to decode the clients’ voice
packets, sum them, compress, and send them back to each client.
Because each client requires his own voice to be subtracted from
the sum, the packet compression usually has to be done separately
for each individual client. 3) Since the voice packets are encoded
twice, a problem known as tandem encoding [6] arises, and the
voice quality is reduced.

Because of problems 1) and 2), the CPU, memory and
bandwidth load on the bridge increase linearly to the number of
clients it is connected to. In order to reduce these costs, silence
suppression is often used on the clients. By sending out packets
only when actual speech is detected from the microphone, the
bridge only needs to receive and mix those packets that contain
actual voice. Thus the cost on the bridge is reduced substantially.

In practice, however, the effective savings from silence
suppression depends highly on external factors such as microphone
quality, its position relative to the user’s mouth, the gain of the

sound card, the level and type of background noise. Since many of
those factors are not controllable by the bridge, the bridge is forced
to reserve a significant amount of resources to deal with the
fluctuation in the number of incoming packets.

Our proposed solution, namely PASS (Peer-Aware Silence
Suppression), tries to reduce the amount of packet fluctuation by
restricting the number of concurrent speakers to be less than
(including) a pre-set number (e.g. 3). This solution is based on the
observation that in a natural conservation, it is rare that more than
3 people speak at the same time. And even when that happens, it
is not likely that all of them can be understood clearly -- so it is
less important to transmit all of them.

There have been several published solutions in which the
bridge runs a speaker selection algorithm [2][6]. Our solution has a
major difference from those earlier works: the enforcement of such
restriction in our solution is distributed. We propose an improved
silence suppression algorithm to be run on each client. Unlike the
traditional silence suppression, a packet not only has to pass the
client's own speech/silence test, the test is also dependent on the
level of voice activity of the packets that the client is currently
receiving from its peers. Conceptually similar to the Ethernet
protocol, when a client does decide to send the packets, its packets
can suppress the clients with lower voice activity level from
sending their packets if the conference already has more than a
pre-set number of speakers.

The distributed architecture of our solution has a number of
benefits comparing a bridge-based one: 1) The client sends less
packets so bandwidth utilization is more efficient on both the client
and the bridge. 2) It offloads some CPU processing from the
bridge. 3) Since the client knows the number of concurrent
speakers, it can encode the packets at a different bit rate so the
total bandwidth from all those speakers is fixed. Accomplishing
this using a bridge-based algorithm will require a scalable audio
codec. 4) Most importantly, a distributed algorithm can be applied
to a variety of network topologies (such as full mesh, bridge-based,
or a hybrid of the two) thus allowing the benefits of speaker
selections to be applied to more voice conferencing scenarios.

The remainder of this paper is organized as follows. In
Section 2 we will give a brief overview of some of the existing
works and compare them against our approach. Section 3 describes
the basic overview of how the system works. In Section 4 we
discuss the voice activity measure and ranking algorithms.
Concluding remarks are given in Section 5.

2. RELATED WORKS
As we mentioned, the traditional architecture for VoIP multiparty
conference comprising a mixing bridge has quite a few drawbacks,
such as the tandem encoding, excess jitter buffer delay, as well as
the bridge’s heavy demand on the bandwidth and computing
power. One solution avoiding these problems is the full-mesh
architecture [3], where no bridge (server) exists, and all clients
directly communicate among themselves, sending/receiving
packets to/from each other. In this architecture, no tandem
encoding is involved since every audio packet only goes through

only one encoding-decoding cycle. Jitter buffer delay is also
reduced. The major drawback of full-mesh architecture is its high
bandwidth consumption because every client is consistently
sending/receiving audio packets to/from all the peers. The
scalability of this architecture is rather poor because as the number
of parties, say N, increases, the whole network will get jammed
quickly since there are N(N-1) streams flowing across the network
at anytime. The computing demand for the clients is another
potential problem, since each of them needs to decode and mix
signals coming from N-1 peers. Overall, full-mesh is a simple
topology that can provide high quality audio for conferencing
among a small number of clients (e.g. <5).

A relatively recent proposal to address tandem encoding
problem is Tandem Free Operation (TFO) [6]. Unlike a traditional
central bridge, the TFO bridge does not mix the packets into a
single channel. In order to limit the bandwidth, it forwards packets
from at most M channels (e.g. 2 or 3, usually M<<N) at any
moment, assuming there are at most M concurrent speakers - note
that this is a reasonable assumption for conferences in real life, and
is also validated by experiments in [6]. In TFO, each client sends
some auxiliary bits along with each voice packet. When each
voice packet arrives at the bridge, a speaker selection algorithm is
run at the bridge to decide if it is going to forward to the other
clients or is simply dropped. TFO can be thought of as a bridge-
based silence suppression, where channels not selected as the top
M channels are treated as if they were in silence. By using this
technique, the upper bound of incoming bandwidth to each client
is M times of a single channel. It is possible to limit the bandwidth
further if a scalable audio codec is used and the bridge can do
some bit chopping.

However, in the TFO architecture the bandwidth utilization is
still not optimized, since all the clients are consistently sending
audio packets to the bridge, whereas most of these packets are
simply dropped by the bridge through the speaker selection
procedure. In other words, these “useless” packets are sent out
anyway, resulting in the unnecessary bandwidth occupation in the
bridge’s downloading channel and the uploading channel of each
client as well.

3. SYSTEM OVERVIEW

Our PASS system has a decentralized architecture, the idea
distinguishing it from conventional full mesh architecture is that
here the clients are more intelligent and able to decide whether to
send out packets based on the states of both itself and its peers.
Similar to TFO, in PASS the number of concurrent speakers is
limited to be M (again, usually M<<N), which implies the
existence of a speaker selection mechanism. However in PASS,
speaker selection is done separately by each client, unlike TFO
where the bridge performs the task.

In the PASS system, each audio packet contains a Voice
Activity Score (VAS), which quantifies the level of voice activity
(not simply the volume, as we shall see in Section 4) of the audio
frame encoded in this packet. Each time a client captures an audio
frame from the microphone, it computes the VAS. Subsequently,
silence suppression is performed for current audio frame by
comparing its VAS with a threshold. If the VAS is below the
threshold, the audio frame is considered as silence and discarded
immediately. Otherwise, the client further compares its own VAS
with those of its peers, which it obtained from the incoming
packets. If the local client finds itself ranked among the topmost M
clients, it encodes the audio frame and sends out the packet (with

the VAS embedded in) towards all the other clients. Otherwise, it
knows at once that it doesn’t have the chance to be heard, thus
discarding the audio frame.

The computational load to perform above silence suppression
and speaker selection algorithm is quite low. The only relatively
computation-intensive routine is the calculation of VAS. However,
notice that each client only needs to calculate its own VAS and
those of the peers can be obtained through partial decoding of the
incoming packets. Of course, in order to replay the audio signals of
the peers, the local client also needs to decode the incoming
packets and mix the signals. But recall that since the number of
concurrent speakers is bounded by M, decoding and mixing only
need to be done for at most M peers. In our experience, on a
Pentium 4 3.2G Hz desktop PC, the entire client consumes only
about 3% of its CPU time.

It can be seen that PASS generalizes the silence suppression
mechanism in full mesh. Now, each client decides whether to
suppress its packets not only based on its own voice activity, but
also on the voice activities of its peers, hence the name Peer-
Aware Silence Suppression. The PASS architecture is also similar
to TFO in that both systems try to limit the number of concurrent
speakers through some speaker selection procedure. The difference
is obvious, as in PASS this is done separately by the clients,
therefore the computing and bandwidth load on the TFO bridge is
now completely distributed to each client. In this way, the PASS
architecture absorbs the merits of both full mesh and TFO,
rendering a VoIP conferencing system with better scalability,
lower bandwidth occupation and jitter buffer delay.

4. VOICE ACTIVITY SCORE AND ITS RANKING

The core of PASS lies in how to rank the speakers’ voice activities
thus only allowing the most deserving ones to send their packets.
In practice, a good algorithm should possess these merits:
• Accuracy: The voice activity should be correctly identified,

and silence should be effectively suppressed.
• Robustness: Accuracy should be achieved under complex

circumstances. For example, users may be using microphones
of different quality, meanwhile the environment around them
may contain various background noises of different levels.

• Transparency: The users should have a natural conferencing
experience. This involves several aspects. First, speaker
selection should be fair to all the conferees: different users
may have different volume level (due to the user’s own voice
property, the microphone’s distance to the user’s mouth, or
the gain of the sound card), but the one with lower volume
level shouldn’t have less chance to be selected when
speaking. Secondly, some important phenomena that occur in
a face-to-face meeting, such as interruption by raising voice,
should be allowed. On the other hand, spurious speaker
selection, such as quick switching back and forth, should be
avoided.

It can be seen in Section 3 that the key of the speaker selection
algorithm in PASS is how to compute VAS and how to rank the
clients. We are going to show how our speaker selection algorithm
tries to satisfy above requirements.

4.1. The Calculation of VAS
In order to satisfy the requirements for a good speaker selection
algorithm, the VAS should hold these properties:

a) Effectively discriminating voice and silence. We would like
to point out that in practice, the definition of silence is in a
broad sense, because there are all kinds of background noises
captured by the microphone even when the conferee is not
speaking. In our experience, an especially interesting type of
noise is the breathing of the user if the microphone is close to
his/her mouth. The VAS’s calculated for a voice frame and a
silence (and/or noise) frame should differ as much as
possible, so that silence (in broad sense) can be effectively
suppressed.

b) Insensitivity to the volume level. The user with lower volume
wouldn’t be treated unfairly, i.e. receive lower VAS.

c) A sharp volume increase results in higher VAS in short term,
allowing a natural way of interruption by raising one’s voice.

d) Temporally smooth. Smooth VAS is not only favored for
accurate silence suppression and leads to less spurious
speaker switching. More importantly, because each client can
only compare its current VAS with the delayed version (due
to network transmission) of the peers’ VAS’s, smooth VAS
results in less decision discrepancy among clients.

4.1.1. Feature-based VAS (FVAS)
The most natural choice for the quantity measuring the voice
activity of an audio frame is its energy. Since frame energy is easy
to calculate, it is widely used for silence suppression [5].
Quantifying voice activity with frame energy involves the
assumption that background noises have much lower energy level
compared to voice. However in our experience, this assumption is
not valid. As we mentioned, a user may use a cheap microphone
which has low SNR and captures a lot of environmental noises.
Furthermore, some noises, e.g. the user’s breathing, have high
energy level per se. Therefore, many noises cannot be well
discriminated from true voice if only frame energy is considered.
Instead, we propose a pattern classification based method to
calculate a quantity which is able to identify voice frames robustly,
even in the existence of various noises with high energy level.

We model silence suppression as a standard two class
classification problem. For each audio frame, the MFCC (Mel-
Frequency Cepstral Coefficients) [4] and their 1st and 2nd order
temporal differences are concatenated, forming a D=39 dimension
feature vector. The task is to design a classifier that decides
whether an audio frame belongs to voice or noise. To train the

classifier, we collected audio signals recorded in meeting rooms
and offices, and labeled each audio frame as “voice” or “noise”.

The first step is to seek in the original D-dimensional feature
space a lower dimensional subspace, in which the two classes can
be well discriminated. By visualizing the training data, it is found
that in the feature space the noise samples are surrounded by voice
samples and are much more concentrated than the latter. This
suggests that silence suppression can be modeled as a “target
detection problem” where the target class “noise” should be
discriminated from the clutter class “voice”. For this type of
problem, traditional discriminative method such as Fisher Linear
Discriminant is not suitable. Instead, an effective method for
seeking a discriminative subspace proposed in [1] is employed.
The discriminative projection vector w* is obtained by solving:

()()
argmin

T
N

TT
N V N V N V

∗ =
⎡ ⎤+ + − −⎢ ⎥⎣ ⎦

w

w R w
w

w R R m m m m w
,

where (mN , RN) and (mV , RV) are the mean-covariance pairs of the
noise class and voice class respectively, which are calculated from
the training data. This optimization problem can be easily solved
through generalized eigenvalue decomposition. It should be
pointed out that in [1] just a 1D subspace is sought, by picking the
generalized eigenvector with the smallest eigenvalue, whereas in
our case d>1 generalized eigenvectors are picked, forming a D-by-
d matrix W. The column vectors of W span a d-dimensional
discriminative subspace (d=10 in our experiments).

In the discriminative subspace, we assume Gaussian
distribution for the noise class, thus the likelihood that an audio
frame belongs to the noise class is given by:

 () () ()()1
2| exp

T

N Np noise ∝ − − −x x m K x m ,

where x is the D=39 dimensional feature vector for the audio
frame, and () 1T

N

−
= TW W R W WK is a constant square matrix.

We define the audio frame’s Feature-based VAS as:
 () ()T

NFVAS = − −x m K x mN . (1)
Clearly, larger FVAS implies that the audio frame is less likely to
be noise, in other words, more likely to be voice.

It is worthy noticing that the calculation of FVAS (1)can be
done fairly efficiently. If we do an orthogonal diagonalization

() 1 2T T
N

−
= =C W R W U UΛ , where is d-by-d orthogonal

matrix and Λ is diagonal - this can always be done since C is
positive semi-definite. Defining

U

()T= ΛH WU , we have:

Figure 1: FVAS, VAS and the morphological filtering.

 (2) 2 T T T= Λ =K WU U W H H
And (1) can be written as: 2

NFVAS = −Hx m , (3)
where is a d-dimensional constant vector. Equation N =m HmN
(3) means that in order to calculate FVAS, we only need to project

 to d-dimensional through H , then calculate the SSD (Sum of
Squared Differences) between the projected vector and constant
vector in the d-dimensional subspace.

x

Nm
The FVAS defined this way is able to effectively discriminate

true voice and various noises, including high energy level noises
which cannot be suppressed using frame-energy based methods.
This is demonstrated in Figure 1. The first row shows the
waveforms of an audio clip - among the four speech-like spurts,
only the first corresponds to true voice, whereas the other three are
actually the breathing noises of the speaker. As shown in the 3rd
row, frame-energy could not differentiate the true voice and the

noises. However, the FVAS, shown in the 2nd row (green curve),
did a good job, correctly assigning very low responses to the high
energy level noise frames. The red curve shows the
morphologically filtered FVAS (see 4.1.3).

4.1.2. Normalized energy and VAS calculation
Although FVAS can effectively differentiate voice and noises, it is
not suitable for speaker selection since it does not directly reflect
the speaker’s volume thus does not hold properties b) and c).
Therefore, another quantity is introduced, which we call adaptively
normalized frame energy and denote as E . This normalized frame
energy is computed as follows:
1. Compute frame energy E.
2. Compute , the running average of voice energy, i.e. the

average energy of most recent (say, in a time window of
length T

ε

E=15sec) audio frames which are classified as voice.
3. Obtain via normalization: E E E ε= .

E holds properties b) and c) that we demanded for VAS. It’s
clear that E is insensitive to the volume level because it is a
normalized quantity. Meanwhile, a sudden increase in E will cause

 to increase sharply, but this relatively larger E will last only
for a short term till the running average follows the increase.
E

ε
The final VAS is defined to be the linear combination of

FVAS and : (4) E ()1VAS kE FVASα α= ⋅ + − ⋅

where the weight is also a function of FVAS: 0 α≤ ≤ 1

)⎤⎦

]

 . (5) (
1

1 exp b c FVASα
−⎡= + − ⋅⎣

Constants b and c in (5) are chosen so that for noise frames
while for voice frames . The meaning of

0α ≈
1α ≈ (4) is clear: for

noise frames, we tend to use FVAS as VAS while for voice frames
we favor kE . The constant k is chosen to scale E to be
comparable with FVAS.

4.1.3. Morphological filtering for VAS smoothing
VAS defined in (4) combines the merits of FVAS and E , thus
holding all the properties we listed except for d). Since VAS is
calculated independently for each frame, the correlation between
neighboring frames hasn’t been taken into account so far, resulting
in a quickly oscillating sequence. We may smooth this sequence
through a (nonlinear) filtering operation:

 [] [()
0,1,...,
max
k K

VAS n VAS n k
=

′ = − , (6)

which is actually a unilateral morphological dilation. Note that
more complex technique modeling the temporal correlation, such
as HMM, could be used instead, but the method we are employing
is much faster, easy to implement, and working well for our
application. Moreover, this operation also introduces speech
hangover which helps avoid audible speech clipping [5].

The last row of Figure 1 (green curve) shows the VAS
calculated by fusing FVAS and frame energy, as well as its
morphologically filtered version (red curve). Compared to the
FVAS shown in the 2nd row, VAS better reflects the energy
properties for the voice frames. Meanwhile, it preserves FVAS’s
discriminative power on voice and noise frames.

4.2. Ranking VAS for speaker selection
With the well defined VAS, it seems that speaker selection can be
done simply by sorting the clients according to their VAS, and
selecting the top ranked M ones. However, this is not true.
Consider, for instance, a simple case where we select M=1 speaker
from N=2 clients, if we simply choose the speaker with higher
VAS, spurious switching will occur frequently when the two users
are speaking simultaneously. One effective method to prevent this
kind of switching is to introduce a “barge-in” mechanism [5]. With
this mechanism, the interrupter may suppress the current speaker
only if its VAS is higher than the latter’s by at least a margin
called the barge-in threshold.

In the two-client case discussed above, implementing the
barge-in mechanism is straightforward. For a general number of
clients, we suggest an efficient implementation for barge-in
mechanism enabled ranking. The key idea is to design an
appropriate comparison routine, so that any standard sorting
algorithm (e.g. qsort) can be used immediately. The pseudo code
of the comparison routine is given in Figure 2.

5. CONCLUDING REMARKS

Voice over IP is becoming a more and more accepted way of
communicating. Compared to the PSTN, the clients of VoIP
applications usually have much more powerful hardware available
so it becomes easier to run smart algorithms on those clients in
order to achieve optimal performance on the whole network. The
solution proposed in this paper, PASS (Peer-Aware Silence
Suppression), follows this movement. Unlike traditional silence
suppression, PASS puts a limit on the number of concurrent
speakers in a conference, thus making the number of incoming
packets more predictable. Conceptually similar to the Ethernet
protocol, our algorithm is distributed to run on each client –
making it suitable for a wide variety of network topologies. For
example, PASS is compatible with the full mesh architecture and
integrating PASS with full mesh clients will considerably improve
their scalability.

7. REFERENCES

[1] M. Elad, Y. Hel-Or, and R. Keshet, “Pattern Detection Using
a Maximal Rejection Classifier,” Pattern Recognition Letters,
Vol. 23, No. 12, pp. 1459-1471, Oct 2002.

[2] J. Forgie, C. Feehrer, and P. Weene, “Voice Conferencing
Technology Final Report,” Tech. Rep. DDC AD-A074498,
M.I.T. Lincoln Lab., Lexington, MA, Mar. 1979.

[3] ITU-T Recommendation H.323, “Packet-Based Multimedia
Communication Systems,” Nov. 2000.

Figure 2: The comparison routine for client ranking.

Routine: CompareClient(S1, S2)
If (PriorityLevel(S1)>PriorityLevel(S2))
 Return VAS(S1)>=(VAS(S2)-BargeInThres)
If (PriorityLevel(S1)<PriorityLevel(S2))
 Return VAS(S1)>(VAS(S2)+BargeInThres)
Else Return VAS(S1)>=VAS(S2)

Subroutine: PriorityLevel(S)
If (S is a current speaker): Return 1
Else Return 0

[4] L. Rabiner and B. Juang, “Fundamentals of speech
recognition,” Prentice-Hall, Inc., 1993.

[5] P.J. Smith, “Voice conferencing over IP networks,” Master’s
thesis, McGill University, Montreal, Canada, available online
at http://www.tsp.ece.mcgill.ca, Jan. 2002.

[6] P.J. Smith, P. Kabal and R. Rabipour, “Speaker Selection for
Tandem-Free Operation VOIP Conference Bridges,” Proc.
IEEE Workshop Speech Coding, pp. 120-122, Oct 2002.

