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ABSTRACT 
 
A novel tandem-free solution for multiparty VoIP conferences 
called PASS (Peer-Aware Silence Suppression) is presented. 
Similar to traditional tandem-free solutions, PASS introduces a 
limit on the number of concurrent speakers in a conference. But in 
contrast to traditional solutions, PASS silence suppression and 
speaker selection are completely distributed, running on each 
client. No speaker selection is performed at the bridge at all. This 
configuration leads to better scalability, lower bandwidth 
occupation and jitter buffer delay, and higher compatibility with a 
wide variety of network topologies. The key component of PASS, 
distributed silence suppression and speaker selection, is realized 
through a robust approach proposed in this paper. Based on a voice 
activity measure derived using machine learning techniques, this 
approach is able to reliably suppress silence in complex 
environments, and perform accurate and transparent speaker 
selection as well. 
 

1. INTRODUCTION 
 
Voice over IP (VoIP) is becoming mainstream. This can be 
partially attributed to the proliferation of broadband connections, 
and the availability of low-cost hardware and software. But 
equally important is the fact that most technological challenges 
have been addressed. In particular, solutions to minimize delay, 
delay jitter, and packet loss have all been extensively researched in 
the last several years.  As these technologies go from research to 
actual products, research effort must concentrate on the next needs 
of VoIP technology. One of such needs is high-quality multiparty 
voice conference. When migrating to VoIP, a central bridge-based 
architecture mimicking PSTN conferencing system seems to be an 
obvious design choice.  However, various new problems arise 
when this design is applied to VoIP: 1) A best-effort packet 
network such as the Internet introduces variable delays and packet 
losses into the transport process, requiring the bridge to absorb 
variable delay by a jitter buffer and include some loss concealment 
mechanisms. 2) The central bridge has to decode the clients’ voice 
packets, sum them, compress, and send them back to each client.  
Because each client requires his own voice to be subtracted from 
the sum, the packet compression usually has to be done separately 
for each individual client.  3) Since the voice packets are encoded 
twice, a problem known as tandem encoding [6] arises, and the 
voice quality is reduced. 

Because of problems 1) and 2), the CPU, memory and 
bandwidth load on the bridge increase linearly to the number of 
clients it is connected to.  In order to reduce these costs, silence 
suppression is often used on the clients.  By sending out packets 
only when actual speech is detected from the microphone, the 
bridge only needs to receive and mix those packets that contain 
actual voice.  Thus the cost on the bridge is reduced substantially. 

In practice, however, the effective savings from silence 
suppression depends highly on external factors such as microphone 
quality, its position relative to the user’s mouth, the gain of the 

sound card, the level and type of background noise.  Since many of 
those factors are not controllable by the bridge, the bridge is forced 
to reserve a significant amount of resources to deal with the 
fluctuation in the number of incoming packets. 

Our proposed solution, namely PASS (Peer-Aware Silence 
Suppression), tries to reduce the amount of packet fluctuation by 
restricting the number of concurrent speakers to be less than 
(including) a pre-set number (e.g. 3). This solution is based on the 
observation that in a natural conservation, it is rare that more than 
3 people speak at the same time.  And even when that happens, it 
is not likely that all of them can be understood clearly -- so it is 
less important to transmit all of them. 

There have been several published solutions in which the 
bridge runs a speaker selection algorithm [2][6]. Our solution has a 
major difference from those earlier works: the enforcement of such 
restriction in our solution is distributed. We propose an improved 
silence suppression algorithm to be run on each client.  Unlike the 
traditional silence suppression, a packet not only has to pass the 
client's own speech/silence test, the test is also dependent on the 
level of voice activity of the packets that the client is currently 
receiving from its peers. Conceptually similar to the Ethernet 
protocol, when a client does decide to send the packets, its packets 
can suppress the clients with lower voice activity level from 
sending their packets if the conference already has more than a 
pre-set number of speakers. 

The distributed architecture of our solution has a number of 
benefits comparing a bridge-based one: 1) The client sends less 
packets so bandwidth utilization is more efficient on both the client 
and the bridge. 2) It offloads some CPU processing from the 
bridge. 3) Since the client knows the number of concurrent 
speakers, it can encode the packets at a different bit rate so the 
total bandwidth from all those speakers is fixed. Accomplishing 
this using a bridge-based algorithm will require a scalable audio 
codec. 4) Most importantly, a distributed algorithm can be applied 
to a variety of network topologies (such as full mesh, bridge-based, 
or a hybrid of the two) thus allowing the benefits of speaker 
selections to be applied to more voice conferencing scenarios. 

The remainder of this paper is organized as follows. In 
Section 2 we will give a brief overview of some of the existing 
works and compare them against our approach. Section 3 describes 
the basic overview of how the system works. In Section 4 we 
discuss the voice activity measure and ranking algorithms. 
Concluding remarks are given in Section 5.  
 

2. RELATED WORKS  
As we mentioned, the traditional architecture for VoIP multiparty 
conference comprising a mixing bridge has quite a few drawbacks, 
such as the tandem encoding, excess jitter buffer delay, as well as 
the bridge’s heavy demand on the bandwidth and computing 
power. One solution avoiding these problems is the full-mesh 
architecture [3], where no bridge (server) exists, and all clients 
directly communicate among themselves, sending/receiving 
packets to/from each other. In this architecture, no tandem 
encoding is involved since every audio packet only goes through 



only one encoding-decoding cycle. Jitter buffer delay is also 
reduced. The major drawback of full-mesh architecture is its high 
bandwidth consumption because every client is consistently 
sending/receiving audio packets to/from all the peers. The 
scalability of this architecture is rather poor because as the number 
of parties, say N, increases, the whole network will get jammed 
quickly since there are N(N-1) streams flowing across the network 
at anytime. The computing demand for the clients is another 
potential problem, since each of them needs to decode and mix 
signals coming from N-1 peers. Overall, full-mesh is a simple 
topology that can provide high quality audio for conferencing 
among a small number of clients (e.g. <5).  

A relatively recent proposal to address tandem encoding 
problem is Tandem Free Operation (TFO) [6].  Unlike a traditional 
central bridge, the TFO bridge does not mix the packets into a 
single channel.  In order to limit the bandwidth, it forwards packets 
from at most M channels (e.g. 2 or 3, usually M<<N) at any 
moment, assuming there are at most M concurrent speakers - note 
that this is a reasonable assumption for conferences in real life, and 
is also validated by experiments in [6]. In TFO, each client sends 
some auxiliary bits along with each voice packet.  When each 
voice packet arrives at the bridge, a speaker selection algorithm is 
run at the bridge to decide if it is going to forward to the other 
clients or is simply dropped. TFO can be thought of as a bridge-
based silence suppression, where channels not selected as the top 
M channels are treated as if they were in silence.  By using this 
technique, the upper bound of incoming bandwidth to each client 
is M times of a single channel.  It is possible to limit the bandwidth 
further if a scalable audio codec is used and the bridge can do 
some bit chopping. 

However, in the TFO architecture the bandwidth utilization is 
still not optimized, since all the clients are consistently sending 
audio packets to the bridge, whereas most of these packets are 
simply dropped by the bridge through the speaker selection 
procedure. In other words, these “useless” packets are sent out 
anyway, resulting in the unnecessary bandwidth occupation in the 
bridge’s downloading channel and the uploading channel of each 
client as well. 

3. SYSTEM OVERVIEW 
 
Our PASS system has a decentralized architecture, the idea 
distinguishing it from conventional full mesh architecture is that 
here the clients are more intelligent and able to decide whether to 
send out packets based on the states of both itself and its peers. 
Similar to TFO, in PASS the number of concurrent speakers is 
limited to be M (again, usually M<<N), which implies the 
existence of a speaker selection mechanism. However in PASS, 
speaker selection is done separately by each client, unlike TFO 
where the bridge performs the task. 

In the PASS system, each audio packet contains a Voice 
Activity Score (VAS), which quantifies the level of voice activity 
(not simply the volume, as we shall see in Section 4) of the audio 
frame encoded in this packet. Each time a client captures an audio 
frame from the microphone, it computes the VAS. Subsequently, 
silence suppression is performed for current audio frame by 
comparing its VAS with a threshold. If the VAS is below the 
threshold, the audio frame is considered as silence and discarded 
immediately. Otherwise, the client further compares its own VAS 
with those of its peers, which it obtained from the incoming 
packets. If the local client finds itself ranked among the topmost M 
clients, it encodes the audio frame and sends out the packet (with 

the VAS embedded in) towards all the other clients. Otherwise, it 
knows at once that it doesn’t have the chance to be heard, thus 
discarding the audio frame. 

The computational load to perform above silence suppression 
and speaker selection algorithm is quite low. The only relatively 
computation-intensive routine is the calculation of VAS. However, 
notice that each client only needs to calculate its own VAS and 
those of the peers can be obtained through partial decoding of the 
incoming packets. Of course, in order to replay the audio signals of 
the peers, the local client also needs to decode the incoming 
packets and mix the signals. But recall that since the number of 
concurrent speakers is bounded by M, decoding and mixing only 
need to be done for at most M peers. In our experience, on a 
Pentium 4 3.2G Hz desktop PC, the entire client consumes only 
about 3% of its CPU time. 

It can be seen that PASS generalizes the silence suppression 
mechanism in full mesh. Now, each client decides whether to 
suppress its packets not only based on its own voice activity, but 
also on the voice activities of its peers, hence the name Peer-
Aware Silence Suppression. The PASS architecture is also similar 
to TFO in that both systems try to limit the number of concurrent 
speakers through some speaker selection procedure. The difference 
is obvious, as in PASS this is done separately by the clients, 
therefore the computing and bandwidth load on the TFO bridge is 
now completely distributed to each client. In this way, the PASS 
architecture absorbs the merits of both full mesh and TFO, 
rendering a VoIP conferencing system with better scalability, 
lower bandwidth occupation and jitter buffer delay. 
 

4. VOICE ACTIVITY SCORE AND ITS RANKING  
 
The core of PASS lies in how to rank the speakers’ voice activities 
thus only allowing the most deserving ones to send their packets. 
In practice, a good algorithm should possess these merits: 
• Accuracy: The voice activity should be correctly identified, 

and silence should be effectively suppressed. 
• Robustness: Accuracy should be achieved under complex 

circumstances. For example, users may be using microphones 
of different quality, meanwhile the environment around them 
may contain various background noises of different levels. 

• Transparency: The users should have a natural conferencing 
experience. This involves several aspects. First, speaker 
selection should be fair to all the conferees: different users 
may have different volume level (due to the user’s own voice 
property, the microphone’s distance to the user’s mouth, or 
the gain of the sound card), but the one with lower volume 
level shouldn’t have less chance to be selected when 
speaking. Secondly, some important phenomena that occur in 
a face-to-face meeting, such as interruption by raising voice, 
should be allowed. On the other hand, spurious speaker 
selection, such as quick switching back and forth, should be 
avoided. 

It can be seen in Section 3 that the key of the speaker selection 
algorithm in PASS is how to compute VAS and how to rank the 
clients. We are going to show how our speaker selection algorithm 
tries to satisfy above requirements. 
 
4.1. The Calculation of VAS 
In order to satisfy the requirements for a good speaker selection 
algorithm, the VAS should hold these properties: 



a) Effectively discriminating voice and silence. We would like 
to point out that in practice, the definition of silence is in a 
broad sense, because there are all kinds of background noises 
captured by the microphone even when the conferee is not 
speaking. In our experience, an especially interesting type of 
noise is the breathing of the user if the microphone is close to 
his/her mouth. The VAS’s calculated for a voice frame and a 
silence (and/or noise) frame should differ as much as 
possible, so that silence (in broad sense) can be effectively 
suppressed. 

b) Insensitivity to the volume level. The user with lower volume 
wouldn’t be treated unfairly, i.e. receive lower VAS. 

c) A sharp volume increase results in higher VAS in short term, 
allowing a natural way of interruption by raising one’s voice. 

d) Temporally smooth. Smooth VAS is not only favored for 
accurate silence suppression and leads to less spurious 
speaker switching. More importantly, because each client can 
only compare its current VAS with the delayed version (due 
to network transmission) of the peers’ VAS’s, smooth VAS 
results in less decision discrepancy among clients. 

 
4.1.1. Feature-based VAS (FVAS) 
The most natural choice for the quantity measuring the voice 
activity of an audio frame is its energy. Since frame energy is easy 
to calculate, it is widely used for silence suppression [5]. 
Quantifying voice activity with frame energy involves the 
assumption that background noises have much lower energy level 
compared to voice. However in our experience, this assumption is 
not valid. As we mentioned, a user may use a cheap microphone 
which has low SNR and captures a lot of environmental noises. 
Furthermore, some noises, e.g. the user’s breathing, have high 
energy level per se. Therefore, many noises cannot be well 
discriminated from true voice if only frame energy is considered. 
Instead, we propose a pattern classification based method to 
calculate a quantity which is able to identify voice frames robustly, 
even in the existence of various noises with high energy level. 

We model silence suppression as a standard two class 
classification problem. For each audio frame, the MFCC (Mel-
Frequency Cepstral Coefficients) [4] and their 1st and 2nd order 
temporal differences are concatenated, forming a D=39 dimension 
feature vector. The task is to design a classifier that decides 
whether an audio frame belongs to voice or noise. To train the 

classifier, we collected audio signals recorded in meeting rooms 
and offices, and labeled each audio frame as “voice” or “noise”. 

The first step is to seek in the original D-dimensional feature 
space a lower dimensional subspace, in which the two classes can 
be well discriminated. By visualizing the training data, it is found 
that in the feature space the noise samples are surrounded by voice 
samples and are much more concentrated than the latter. This 
suggests that silence suppression can be modeled as a “target 
detection problem” where the target class “noise” should be 
discriminated from the clutter class “voice”. For this type of 
problem, traditional discriminative method such as Fisher Linear 
Discriminant is not suitable. Instead, an effective method for 
seeking a discriminative subspace proposed in [1] is employed. 
The discriminative projection vector w* is obtained by solving: 

( )( )
argmin

T
N

TT
N V N V N V

∗ =
⎡ ⎤+ + − −⎢ ⎥⎣ ⎦

w

w R w
w
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, 

where (mN , RN) and (mV , RV) are the mean-covariance pairs of the 
noise class and voice class respectively, which are calculated from 
the training data. This optimization problem can be easily solved 
through generalized eigenvalue decomposition. It should be 
pointed out that in [1] just a 1D subspace is sought, by picking the 
generalized eigenvector with the smallest eigenvalue, whereas in 
our case d>1 generalized eigenvectors are picked, forming a D-by-
d matrix W. The column vectors of W span a d-dimensional 
discriminative subspace (d=10 in our experiments). 

In the discriminative subspace, we assume Gaussian 
distribution for the noise class, thus the likelihood that an audio 
frame belongs to the noise class is given by: 

 ( ) ( ) ( )( )1
2| exp

T

N Np noise ∝ − − −x x m K x m , 

where x is the D=39 dimensional feature vector for the audio 
frame, and ( ) 1T

N

−
= TW W R W WK  is a constant square matrix. 

We define the audio frame’s Feature-based VAS as: 
 ( ) ( )T

NFVAS = − −x m K x mN . (1) 
Clearly, larger FVAS implies that the audio frame is less likely to 
be noise, in other words, more likely to be voice. 

It is worthy noticing that the calculation of FVAS  (1)can be 
done fairly efficiently. If we do an orthogonal diagonalization 

( ) 1 2T T
N

−
= =C W R W U UΛ  , where  is d-by-d orthogonal 

matrix and Λ  is diagonal - this can always be done since C  is 
positive semi-definite. Defining 

U

( )T= ΛH WU , we have: 

 
Figure 1: FVAS, VAS and the morphological filtering. 

  (2) 2 T T T= Λ =K WU U W H H
And (1) can be written as: 2

NFVAS = −Hx m , (3) 
where  is a d-dimensional constant vector. Equation N =m HmN
(3) means that in order to calculate FVAS, we only need to project 

 to d-dimensional through H , then calculate the SSD (Sum of 
Squared Differences) between the projected vector and constant 
vector  in the  d-dimensional subspace. 

x

Nm
The FVAS defined this way is able to effectively discriminate 

true voice and various noises, including high energy level noises 
which cannot be suppressed using frame-energy based methods. 
This is demonstrated in Figure 1. The first row shows the 
waveforms of an audio clip - among the four speech-like spurts, 
only the first corresponds to true voice, whereas the other three are 
actually the breathing noises of the speaker. As shown in the 3rd 
row, frame-energy could not differentiate the true voice and the 



noises. However, the FVAS, shown in the 2nd row (green curve), 
did a good job, correctly assigning very low responses to the high 
energy level noise frames. The red curve shows the 
morphologically filtered FVAS (see 4.1.3). 
 

4.1.2. Normalized energy and VAS calculation 
Although FVAS can effectively differentiate voice and noises, it is 
not suitable for speaker selection since it does not directly reflect 
the speaker’s volume thus does not hold properties b) and c). 
Therefore, another quantity is introduced, which we call adaptively 
normalized frame energy and denote as E . This normalized frame 
energy is computed as follows: 
1. Compute frame energy  E. 
2. Compute , the running average of voice energy, i.e. the 

average energy of most recent (say, in a time window of 
length T

ε

E=15sec) audio frames which are classified as voice. 
3. Obtain  via normalization: E E E ε= . 

E  holds properties b) and c) that we demanded for VAS. It’s 
clear that E  is insensitive to the volume level because it is a 
normalized quantity. Meanwhile, a sudden increase in E will cause 

 to increase sharply, but this relatively larger E  will last only 
for a short term till the running average  follows the increase. 
E

ε
The final VAS is defined to be the linear combination of 

FVAS and :  (4) E ( )1VAS kE FVASα α= ⋅ + − ⋅

where the weight  is also a function of FVAS: 0 α≤ ≤ 1

)⎤⎦

]

 . (5) (
1

1 exp b c FVASα
−⎡= + − ⋅⎣

Constants b and c in (5) are chosen so that for noise frames  
while for voice frames . The meaning of 

0α ≈
1α ≈ (4) is clear: for 

noise frames, we tend to use FVAS as VAS while for voice frames 
we favor kE . The constant k  is chosen to scale E  to be 
comparable with FVAS. 
 

4.1.3. Morphological filtering for VAS smoothing 
VAS defined in (4) combines the merits of FVAS and E , thus 
holding all the properties we listed except for d). Since VAS is 
calculated independently for each frame, the correlation between 
neighboring frames hasn’t been taken into account so far, resulting 
in a quickly oscillating sequence. We may smooth this sequence 
through a (nonlinear) filtering operation: 

 [ ] [( )
0,1,...,
max
k K

VAS n VAS n k
=

′ = − , (6) 

which is actually a unilateral morphological dilation. Note that 
more complex technique modeling the temporal correlation, such 
as HMM, could be used instead, but the method we are employing 
is much faster, easy to implement, and working well for our 
application. Moreover, this operation also introduces speech 
hangover which helps avoid audible speech clipping [5].  

The last row of Figure 1 (green curve) shows the VAS 
calculated by fusing FVAS and frame energy, as well as its 
morphologically filtered version (red curve). Compared to the 
FVAS shown in the 2nd row, VAS better reflects the energy 
properties for the voice frames. Meanwhile, it preserves FVAS’s 
discriminative power on voice and noise frames. 
 

4.2. Ranking VAS for speaker selection 
With the well defined VAS, it seems that speaker selection can be 
done simply by sorting the clients according to their VAS, and 
selecting the top ranked M ones. However, this is not true. 
Consider, for instance, a simple case where we select M=1 speaker 
from N=2 clients, if we simply choose the speaker with higher 
VAS, spurious switching will occur frequently when the two users 
are speaking simultaneously. One effective method to prevent this 
kind of switching is to introduce a “barge-in” mechanism [5]. With 
this mechanism, the interrupter may suppress the current speaker 
only if its VAS is higher than the latter’s by at least a margin 
called the barge-in threshold. 

In the two-client case discussed above, implementing the 
barge-in mechanism is straightforward. For a general number of 
clients, we suggest an efficient implementation for barge-in 
mechanism enabled ranking. The key idea is to design an 
appropriate comparison routine, so that any standard sorting 
algorithm (e.g. qsort) can be used immediately. The pseudo code 
of the comparison routine is given in Figure 2.  
 

5. CONCLUDING REMARKS 
 
Voice over IP is becoming a more and more accepted way of 
communicating. Compared to the PSTN, the clients of VoIP 
applications usually have much more powerful hardware available 
so it becomes easier to run smart algorithms on those clients in 
order to achieve optimal performance on the whole network. The 
solution proposed in this paper, PASS (Peer-Aware Silence 
Suppression), follows this movement.  Unlike traditional silence 
suppression, PASS puts a limit on the number of concurrent 
speakers in a conference, thus making the number of incoming 
packets more predictable.  Conceptually similar to the Ethernet 
protocol, our algorithm is distributed to run on each client – 
making it suitable for a wide variety of network topologies. For 
example, PASS is compatible with the full mesh architecture and 
integrating PASS with full mesh clients will considerably improve 
their scalability. 
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