
Boosting-Based Multimodal Speaker Detection for
Distributed Meetings

Cha Zhang∗, Pei Yin†, Yong Rui∗, Ross Cutler∗ and Paul Viola∗
∗ Microsoft Research, One Microsoft Way, Redmond, USA
†College of Computing, Georgia Institute of Technology

Abstract— Speaker detection is a very important task in
distributed meeting applications. This paper discusses a number
of challenges we met while designing a speaker detector for the
Microsoft RoundTable distributed meeting device, and proposes a
boosting-based multimodal speaker detection (BMSD) algorithm.
Instead of performing sound source localization (SSL) and multi-
person detection (MPD) separately and subsequently fusing their
individual results, the proposed algorithm uses boosting to select
features from a combined pool of both audio and visual features
simultaneously. The result is a very accurate speaker detector
with extremely high efficiency. The algorithm reduces the error
rate of SSL-only approach by 47%, and the SSL and MPD fusion
approach by 27%.

I. INTRODUCTION

As globalization continues to spread throughout the world
economy, it is increasingly common to find projects where
team members reside in different time zones. To provide
a means for distributed groups to work together on shared
problems, there has been an increasing interest in building
special purpose devices and even “smart rooms” to support
distributed meetings [1], [2], [3], [4]. These devices often con-
tain multiple microphones and cameras. An example device
called RoundTable is shown in Figure 1(a). It has a six-element
circular microphone array at the base, and five video cameras
at the top. The captured videos are stitched into a 360 degree
panorama, which gives a global view of the meeting room. The
RoundTable device enables remote group members to hear and
view the meeting live online. In addition, the meetings can
be recorded and archived, allowing people to browse them
afterward.

One of the most desired features in such distributed meeting
systems is to provide remote users with a close-up of the
current speaker which automatically tracks as a new participant
begins to speak [2], [3], [4]. The speaker detection problem,
however, is non-trivial. Two video frames captured by our
RoundTable device are shown in Figure 1(b). During the
development of our RoundTable device, we faced a number
of challenges:
• People do not always look at the camera, in particular

when they are presenting on a white board, or working
on their own laptop.

• There can be many people in a meeting, hence it is very
easy for the speaker detector to get confused.

• The color calibration in real conference rooms is very
challenging. Mixed lighting across the room make it very
difficult to properly white balance across the panorama
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Fig. 1. RoundTable and its captured images. (a) The RoundTable device. (b)
Captured images.

images. Face detection based on skin color is very unre-
liable in such environments.

• To make the RoundTable device stand-alone, we have to
implement the speaker detection module on a DSP chip
with the budget of 100 million instructions per second
(MIPS). Hence the algorithm must be extremely efficient.
Our initial goal is to detect speaker at the speed of 1 frame
per second (FPS) on the DSP.

• While the RoundTable device captures very high resolu-
tion images, the resolution of the images used for speaker
detection is low due to the memory and bandwidth
constraints of the DSP chip. For people sitting at the far
end of the table, the head size is no more than 10 × 10
pixels, which is beyond the capability of most modern
face detectors [5].

In existing distributed meeting systems, the two most pop-
ular speaker detection approaches are through sound source
localization (SSL) [6], [7] and SSL combined with face
detection using decision level fusion (DLF) [3], [4]. However,
they both have difficulties in practice. The success of SSL
heavily depends on the levels of reverberation noise (e.g., a
wall or whiteboard can act as an acoustic mirror) and ambient
noise (e.g., computer fans), which are often high in many of
the meeting rooms. If a face detector is available, decision
level fusion can certainly help improve the final detection
performance. However, building a reliable face detector in the
above mentioned environment is itself a very challenging task.

In this paper, we propose a novel boosting-based multi-
modal speaker detection (BMSD) algorithm, which attempts
to address most of the challenges listed above. The algorithm
does not try to locate human faces, but rather heads and
upper bodies. By integrating audio and visual multimodal
information into a single boosting framework at feature level,
it explicitly learns the difference between speakers and non-
speakers. Specifically, we use the output of an SSL algorithm
to compute features for windows in the video frame. These
features are then placed in the same pool as the appearance



and motion visual features computed on the gray scale video
frames, and selected by the boosting algorithm automatically.
The BMSD algorithm reduces the error rate of SSL-only
solutions by 47% in our experiments, and the SSL and person
detection DLF approach by 27%. The BMSD algorithm is
super-efficient. It achieves the above performance with merely
20 SSL and Haar basis image features. With pruning, we
show the average number of features computed for each
detection window drops further to less than two. Lastly, BMSD
does not require high frame rate video analysis or tight AV
synchronization, which is ideal for our application.

The paper is organized as follows. Related work is discussed
in Section II. The BMSD algorithm is described in Section III.
Experimental results and conclusions are given in Section IV
and V, respectively.

II. RELATED WORK

Audio visual information fusion has been a popular ap-
proach for many research topics including speech recogni-
tion [8], [9], video segmentation and retrieval [10], event
detection [11], [12], speaker change detection [13], speaker
detection [14], [15], [16], [17] and tracking [18], [19], etc. In
the following we describe briefly a few approaches that are
closely related to this paper.

Audio visual synchrony is one of the most popular mecha-
nisms to perform speaker detection. Explicitly or implicitly,
many approaches measure the mutual information between
audio visual signals and search for regions of high correlation
and tag them as likely to contain the speaker. Representative
works include Hershey and Movellan [16], Nock et al. [20],
Besson and Kunt [14], and Fisher et al. [15]. Cutler and
Davis [21] instead learned the audio visual correlation using
a time-delayed neural network (TDNN). Approaches in this
category often need just a single microphone, and rely on the
synchrony only to identify the speaker. Most of them require
a good frontal face to work well.

Another popular approach is to build graphical models
for the observed audio visual data, and infer the speaker
location probabilistically. Pavlović et al. [17] proposed to
use dynamic Bayesian networks (DBN) to combine multiple
sensors/detectors and decide whether a speaker is present in
front of a smart kiosk. Beal et al. [22] built a probabilistic
generative model to describe the observed data directly using
an EM algorithm and estimated the object location through
Bayesian inference. Brand et al. [11] used coupled hidden
Markov models to model the relationship between audio visual
signals and classify human gestures. Graphical models are
a natural way to solve multimodal problems and are often
intuitive to construct. However, their inference stage can be
time-consuming and would not fit into our tight computation
budget.

Audio visual fusion has also been applied for speaker
tracking, in particular those based on particle filtering [18],
[19], [23], [24]. In the measurement stage, audio likelihood
and video likelihood are both computed for each sample to
derive its new weight. It is possible to use these likelihoods as

measures for speaker detection, though such an approach can
be very expensive if all the possible candidates in the frame
need to be scanned.

In real-world applications, the two most popular speaker
detection approaches are still SSL-only and SSL combined
with face detection for decision level fusion (DLF) [2], [3],
[4]. For instance, the iPower 900 teleconferencing system from
Polycom uses an SSL-only solution for speaker detection [6].
Kapralos et al. [3] used a skin color based face detector to find
all the potential faces, and detect speech along the directions of
these faces. Yoshimi and Pingali [4] took the audio localization
results and used a face detector to search for nearby faces in
the image. Busso et al. [1] adopted Gaussian mixture models
to model the speaker locations, and fused the audio and visual
results probabilistically with temporal filtering.

As mentioned earlier, speaker detection based on SSL-only
is sensitive to reverberation and ambient noises. The DLF
approach, on the other hand, has two major drawbacks in
speaker detection. First, when SSL and face detection operate
separately, the correlation between audio and video, either at
high frame rate or low frame rate, is lost. Second, a full-
fledged face detector can be unnecessarily slow, because many
regions in the video can be skipped if their SSL confidence
is too low. Limiting the search range of face detection near
SSL peaks, however, is difficult because it is hard to find a
universal SSL threshold for all conference rooms. Moreover,
this can introduce bias towards the decision made by SSL. The
proposed algorithm uses a boosted classifier to perform feature
level fusion of information in order to minimize computation
time and maximize robustness. We will show the superior
performance of BMSD by comparing it with the SSL-only
and DLF approaches in Section IV.

III. BOOSTING-BASED MULTIMODAL SPEAKER
DETECTION

Our speaker detection algorithm adopts the popular boosting
algorithm [25], [26] to learn the difference between speakers
and non-speakers. It computes both audio and visual features,
and places them in a common feature pool for the boosting
algorithm to select. This has a number of advantages. First, the
boosting algorithm explicitly learns the difference between a
speaker and a non-speaker, thus it targets the speaker detection
problem more directly. Second, the final classifier can contain
both audio and visual features, which implicitly explores the
correlation between the audio and visual information if they
coexist after the feature selection. Third, thanks to the cascade
pruning mechanism introduced in [5], audio features selected
early in the learning process will help eliminate many non-
speaker windows, which greatly improves the detection speed.
Lastly, since all the audio visual features are in the same pool,
there is no bias toward either modality.

In the following we first introduce the visual and audio
features, then present the boosting learning algorithm. We also
briefly discuss the SSL-only and SSL and multi-person detec-
tor (MPD) DLF algorithms, which will be used in Section IV
to compare against BMSD.
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Fig. 2. Motion filtering in BMSD. (a) Video frame at t−1. (b) Video frame
at t. (c) Difference image between (a) and (b). (d) Three frame difference
image. (e) Running average of the three frame difference image.

A. Visual Features

Appearance and motion are two important visual cues to
tell a person from the background [27]. The appearance cue
is generally derived from the original video frame, hence we
focus on the motion cue in this section.

The simplest motion filter is to compute the frame difference
between two subsequent frames [27]. When applied to our
testing sequences, we find two major problems, demonstrated
in Figure 2. Figure 2(a) and (b) are two subsequent frames
captured in one of the recorded meetings. Person A was
walking toward the whiteboard to give a presentation. Because
of the low frame rate the detector is running at, the difference
image (c) has two big blobs for person A. Experiments
show that the boosting algorithm often selects motion features
among its top features, and such ghost blobs tend to cause
false positives. Person B in the scene shows another problem.
In a regular meeting, often someone in the room stays still for
a few seconds, hence the frame difference of person B is very
small. This tends to cause false negatives.

To address the first problem, we introduce a simple three
frame difference mechanism to derive the motion pattern. Let
It be the input image at time t, we compute:

Mt = min
(
|It − It−1|, |It − It−2|

)
. (1)

As shown in Figure 2(d), Equation 1 detects a motion region
only when the current frame has large difference with the
previous two frames, and can thus effectively remove the ghost
blobs in Figure 2(c). Note three frame difference was used in
background modeling before [28]. Equation 1 is a variation
that does not require a future frame It+1, hence it does not
incur 1 second extra delay.

We add another frame as Figure 2(e), which is the running
average of the three frame difference images:

Rt = αMt + (1− α)Rt−1. (2)

Fig. 3. Example rectangle features shown relative to the enclosing detection
window. Left: 1-rectangle feature; right: 2-rectangle feature.

The running difference image accumulates the motion in the
history, and captures the long-term motion of people in the
room. It can be seen that even though person B moved very
slightly in one particular frame, the running difference image
is able to capture his body clearly.

Despite their simplicity, the two added images reduce the
detection error significantly. We also experimented by replac-
ing Equation 1 with a background subtraction module such
as the one in [29]. Only marginal improvement was observed
with a relatively high computational cost (for our application).

Given the three frames It, Mt and Rt, we use two kinds
of simple visual features to train the classifier, as shown in
Figure 3. Similar to [5], these features are computed for each
detection window of the video frame. Note each detection
window will cover the same location on all three images.
The 1-rectangle feature on the left of Figure 3 is computed
on the difference image and running difference image only.
Single rectangle features allow the classifier to learn a data
dependent and location dependent difference threshold. The
2-rectangle feature on the right is applied to all three images.
This arrangement is to guarantee that all the features have
zero-mean, so that they are less sensitive to lighting variations.
For our particular application, we find adding more features
such as 3-rectangle or 4-rectangle features gives very limited
improvements on the classifier performance.

B. Audio Features

The raw output from the microphone arrays is a multi-
channel audio signal. To derive speaker location information
from the audio signal, we use the SSL algorithm developed
in [7], which combines the advantages of the steered beam
SSL and the one-step time-delay-of-arrival SSL. In the case
of RoundTable, the microphone array is shared between the
SSL and sound capture, and the geometry is circular because it
provides significantly superior sound quality. Given this circu-
lar array geometry, the SSL only provides 1D azimuth of the
sound source location through hypothesis testing. We obtain
a 1D array of numbers between 0 and 1, which represents
the likelihood of the sound source coming from each tested
horizontal angle [7], denoted as La(θ), θ = 0, α, · · · , 360 −
α. The hypothesis testing is done for every α degrees. In
the current implementation, α = 4 gives good results. We
perform SSL at 1 FPS, which is synchronized to video within
100 milliseconds. For computing audio features for detection
windows in the video frames, we map La(θ) to the image
coordinate as:

La(x) = La

(
θ(x)

)
, x = 1, 2, · · · , X, (3)

where X is the width of the panoramic images, and θ(x) is
the mapping function.
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Fig. 4. Compute SSL features for BMSD. (a) Original image. (b) SSL image.
Bright intensity represents high likelihood. Note the peak of the SSL image
does not correspond to the actual speaker (the right-most person), indicating
a failure for the SSL-only solution.
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Fig. 5. Audio Features extracted from the SSL likelihood function. Note the
15th feature is a binary one which tests if the local region contains the global
peak of SSL.

It is not immediately clear what kind of audio features can
be computed for each detection window from the above 1D
likelihood array. One possibility is to create a 2D image out
of the 1D array by duplicating the values along the vertical
axis, as shown in Figure 4(b) (an similar approach was taken
in [30]). One can treat this image the same as the other ones,
and compute rectangle features such as those in Figure 3 on
this image. However, the local variation of SSL is a very poor
indicator of the speaker location. We instead compute a set of
audio features for each detection window with respect to the
whole SSL likelihood function. The global maximum, mini-
mum and average SSL output are first computed as Lg

max =
maxx La(x), Lg

min = minx La(x) and Lg
avg = 1

X

∑
x La(x),

respectively. Let the left and right boundaries of a detection
window be x0 and x1. Four local numbers are computed
as follows: local maximum Ll

max = maxx0≤x≤x1 La(x);
local minimum Ll

min = minx0≤x≤x1 La(x); local average
Ll

avg = 1
x1−x0

∑
x0≤x≤x1

La(x) and middle output Ll
mid =

La(x0+x1
2 ). We then extract 15 features out of the above

values, as shown in Figure 5.
It is important to note that the audio features used here have

no discrimination power along the vertical axis. Nevertheless,
across different columns, the audio features can vary signifi-
cantly, hence they can still be very good weak classifiers. we
let the boosting algorithm decide if such classifiers are helpful.
From the experiments in Section IV, SSL features are among
the top features selected by the boosting algorithm.

C. The Boosting Algorithm

We adopt the Logistic variant of AdaBoost developed by
Collins, Schapire, and Singer [31] for training the BMSD
detector. The basic algorithm is to boost a set of decision
“stumps”, decision trees of depth one. In each round a single
rectangle feature or audio feature is selected. In addition a

threshold and two weights α and β are computed. During
classification the score of an example is updated by α if the
feature is below the threshold, and β otherwise.

As suggested in [25] importance sampling is used to reduce
the set of examples encountered during training. Before each
round the boosting weight is used to sample a small subset of
the current examples. The best weak classifier is selected with
respect to this sample. The implementation of the boosting
training process differs little from [5], and we refer the readers
to [5] for more details.

D. Alternative Speaker Detection Algorithms

1) SSL-Only: The most widely used approach to speaker
detection is SSL [7], [6]. Given the SSL likelihood as
La(x), x = 1, 2, · · · , X , we simply look for the peak like-
lihood to obtain the speaker direction:

x̂ = arg max
x

La(x). (4)

This method is extremely simple and fast, though its perfor-
mance varies significantly across different conference rooms,
as shown in Section IV.

2) SSL and MPD DLF: The second approach is to design
a multi-person detector, and fuse its results with SSL output
probabilistically. We designed an MPD algorithm similar to
that in [27], with the same visual features described in Sec-
tion III-A. The MPD output is a list of head boxes. To fuse
with the 1D SSL output, a 1D video likelihood function can
be created from these boxes through kernel methods, i.e.:

Lv(x) =
N∑

n=1

e−
(x−xn)2

2σ2 , (5)

where N is the number of detected boxes; xn is the horizontal
center for the nth box; σ is 1

3 of the average head box width.
Assuming the audio and visual likelihoods are independent,
the total likelihood is computed as:

L(x) = La(x) ∗ Lv(x), (6)

and we pick the highest peak in L(x) as the horizontal center
of the active speaker. The height and scale of the speaker is
determined by its nearest detected head box.

IV. EXPERIMENTAL RESULTS

A. Test Data

Experiments were performed using a set of 8 video se-
quences captured by the RoundTable device in different con-
ference rooms, each about 4 minutes long. A total of 790
frames were sampled from these videos. The active speakers’
heads are manually marked with a box as the ground truth.

Since the human body can provide extra cues for speaker
detection, we expand every head box with a constant ratio
to include part of upper body, as shown in Figure 6(b).
Rectangles that are within a certain translation and scaling
limits of the expanded ground truth boxes are used as positive
examples (Figure 6(c)). The remaining rectangles in the videos
are all treated as negative examples.
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Fig. 6. Create positive examples from the ground truth. (a) Original video
frame. (b) Close-up view of the speaker. The blue rectangle is the head box;
the green box is the expanded ground truth box. (c) All gray rectangles are
considered positive examples.

In the following experiments, we will compare the perfor-
mance of the SSL-only, SSL+MPD DLF and BMSD algo-
rithms described in Section III. The MPD algorithm is trained
with exactly the same boosting algorithm in Section III-C,
except that we use all visible people as positive examples,
and restrict learning to include only visual features. Note in the
BMSD training process, the negative examples include people
in the meeting room that were not talking. We expect BMSD
to learn explicitly the difference between speakers and non-
speakers.

B. The Detection Process and the Matching Criterion

Once the classifier has been trained, detection is straight-
forward and efficient. We pass all the rectangles at different
locations and scales to the classifier, similar to Viola and
Jones’ popular face detector [5]. Overlapping positive rectan-
gles are merged into a single rectangle. In order to visualize the
results, we also shrink the rectangle to reverse the expansion
performed during training.

To measure if the detected rectangle is a true positive
detection, we use the following criterion. Let the ground truth
face be {xg, yg, wg, hg}, where xg and yg are the center of
the head box, and wg and hg are the width and height. Let
the detected box be {xd, yd, wd, hd}. A true positive detection
must satisfy:

|xd − xg| < wg; |yd − yg| < hg;
wg

2
< wd < 2wg;

hg

2
< hd < 2hg. (7)

Because SSL-only does not output a detected rectangle, we
only check its horizontal accuracy |x̂ − xg| < wg , where x̂
is computed as x̂ = arg maxx La(x). La(x) was defined in
Equation 3.

C. Detection Performance

We ran a leave-one-out experiment on the 8 testing se-
quences. The MPD and BMSD detectors are both trained on 7
sequences with 20 and 60 features, and tested on the remaining
one. Since in our test data most frames have only one active
speaker, the true detection rate (TDR) and false positive rate
(FPR) satisfies TDR ≈ 1−FPR. Hence we report the peak true
detection rate of various approaches in Figure 7. Note in the
case of SSL+MPD DLF, the MPD thresholds were adjusted
so that the fused detection rate is the best.
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Fig. 7. Peak detection rate for various algorithms.
The eight sequences in Figure 7 can be categorized into

three classes:
1) Seq 1, 2 and 4. In these sequences the reverberation and

ambient noises are small. The SSL performs extremely
well, and both DLF and BMSD perform equally well.

2) Seq 3 and 6. In these sequences there is occasional
reverberation noise. The SSL-only solution does a rea-
sonable job but the detection rate is below 95%. Integrat-
ing visual information helps improve the performance
for both SSL+MPD DLF and BMSD, though there is
no significant difference between SSL+MPD DLF and
BMSD.

3) Seq 5, 7 and 8. Due to severe reverberation (people
talking to the whiteboard), SSL-only has a very poor
average detection rate of 56.8%, SSL+MPD DLF with
20 features has an average detection rate of 68.5%, while
BMSD with 20 features achieves 77.3%. We believe
this is because BMSD explores the low frame rate
correlations between the audio and visual signal much
better than the other two alternatives.

From Figure 7, the total detection error rate of SSL-only,
SSL+MPD DLF and BMSD are 19.4%, 14.1% and 10.3%,
respectively. The BMSD algorithm reduces the detection error
rate of SSL-only by 47%, and the error rate of SSL+MPD
DLF by 27%. These are very significant improvements. It is
worth noting that while BMSD is significantly better than SSL
in the third category, it does not degrade any performance in
category 1.

D. Pruning

The number of features needed in our BMSD detector is
surprisingly small. The BMSD detector with 20 features can
easily run on our DSP processor at 1 FPS, and achieve nearly
90% average detection rate. In this section we examine the
possibility to further speed up the detector by pruning, as was
done in [5], [27].

We use a separate validation data set to compute the pruning
thresholds. We first run the full classifier on the validation
set, and obtain a number of examples that are classified as
positive. We then set the pruning threshold at each node as the
minimum score of these detected rectangles. Note this whole
process does not require ground truth information. We simply
guarantee that on the validation dataset the pruned classifier
will have the same results as the full classifier.

Figure 8 shows the average number of nodes visited when
pruning is enabled in MPD and BMSD. It can be seen that
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Fig. 8. Average number of nodes visited when pruning is enabled. The
improvement is significant in the case of BMSD – 15 times (20/1.32) saving
in computation for 20 features and 32 times (60/1.88) saving for 60 features.
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in both cases pruning reduces the average number of features
to be calculated significantly. The first two features appear to
be very critical since the average number of nodes visited is
only between 1 and 3. Figure 9 shows the first two features
of MPD and BMSD. For MPD, both features are on the
running difference image. The first feature favors rectangles
where there is motion around the head region. The second
feature describes that there is a motion contrast around the
head region. In BMSD, the first feature is an audio feature,
which is the ratio between the local maximum likelihood and
the global maximum likelihood. The second feature is a motion
feature similar to the first feature of MPD, but on the 3-frame
difference image. It is obvious that although audio features do
not have discrimination power along the vertical axis, they are
still very good features, and helps the BMSD to reduce the
average number of computed features by 20-25% according to
Figure 8 (compare MPD and BMSD). In practice, the gain is
even bigger, because the audio features are based on a 1D SSL
curve, which can be pre-computed only once for all rectangles
that share the same horizontal span.

V. CONCLUSIONS

This paper proposes a boosting-based multimodal speaker
detection algorithm that is both accurate and efficient. We
compute audio features from the output of SSL, place them
in the same pool as the video features, and let the logistic
AdaBoost algorithm select the best features. To the best of
our knowledge, this is the first multimodal speaker detection
algorithm based on boosting.
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