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Abstract. We propose a Modified Fourier Descriptor and a new dis-
tance measure for describing and comparing closed planar curves. Our
method accounts for spatial discretization of shapes, an issue seldom
mentioned, much less addressed in the literature.

The motivating application is shape matching in the Multimedia Analysis
and Retrieval System (MARS), our content-based image retrieval system.
The application requires a compact and reliable representation of object
boundaries in the image database, and a similarity measure that can be
computed in real time. We test our shape matching method on a set of
Roman characters. Results indicate that our method is a feasible solution
for real time shape comparison.

1 Introduction

Content-based retrieval (CBR) has gained considerable attention recently [1,
2, 3, 4, 5]. The most commonly researched image features used in retrieval are
color, texture, and shape. Color and texture features are explored in [1, 2, 3, 4, 5].
Although shape features have also been studied[1, 5], it is still difficult to obtain
a good solution.

To address the challenging issues involved in CBR, the Multimedia Analysis
and Retrieval System (MARS) project was started at the University of Illinois
[2, 6, 7, 8, 9, 10]. MARS supports user queries based on global color, texture,
and shape, as well as queries on the spatial layout of color and texture. The
on-line demo for MARS is http://jadzia.ifp.uiuc.edu:8000. MARS uses several
shape matching methods, including Modified Fourier Descriptors (MFD), the
proposed method presented in this paper. (For information on shape matching
methods in MARS other than MFD, see [10], which describes fast algorithms
we developed for Chamfer matching and Hausdorff matching. The reference also
describes a relevance feedback mechanism that helps the user find the matching
method that best fits his/her individual perception of shape feature.)

* This work was supported by the NSF/DARPA/NASA Digital Library Initiative
under Cooperative Agreement No. 94-11318.



In general, a CBR system is useful only if it can retrieve acceptable matches in
real time. This requires the choice of a suitable set of image features, a method for
correctly extracting them, and a feature distance measure that can be computed
in real time.

Our focus is on shape matching. We propose that a useful shape representa-
tion should satisfy the following four conditions:

1. Robustness to Transformation — the representation must be invariant to
translation, rotation, and scaling of shapes, as well as the starting point
used in defining the boundary sequence.

2. Robustness to Noise — shape boundaries often contain local irregularities due
to image noise. More importantly, spatial discretization introduces distortion
along the entire boundary. The representation must be robust to these types
of noise.

3. Feature Extraction Efficiency — feature vectors should be computed effi-
ciently.

4. Feature Matching Efficiency — since matching is done on-line, the distance
measure must require a very small computational cost.

Some simple shape features are the perimeter, area, number of holes, eccen-
tricity, symmetry, etc. Although these features are easy to compute, they usually
result in too many false positives to be useful in a CBR system, thus they are
excluded from our discussion.

Advanced methods that can represent more complex shapes fall into two
categories. Region-based methods are the first category. A typical representative
is the Moment-Invariants Method (MIM) [11]. The disadvantage of the MIM
is its high computational cost (features are computed using the entire region,
including interior pixels), and low discriminatory power. The descriptor tends to
return too many false positives.

Boundary-based methods are the second category, and include the Turning
Angle Method (TAM) [12] and Fourier Descriptors (FD) [13, 14]. These methods
provide a much more complete description of shape than MIM; however, they
are sensitive to the starting point of the shape boundary. They can discount the
effect of the starting point only by solving a non-linear optimization problem,
which is not feasible in a real-time CBR system. Also, to the extent of our
knowledge, little research has been done on how to deal with the problem of
spatial discretization when using these methods. We discuss this in detail in
section 4.

We propose the Modified Fourier Descriptor (MFD), which satisfies our four
conditions above. The FD method is the most closely related work, so we give
a brief review of it in section 2. We discuss the proposed MFD in section 3.
Comparisons between MFD and existing methods are given in section 4. Exper-
imental results and conclusions are in sections 4 and 5, respectively.

List of symbols:



— Ny : number of vertices of a polygon;

— Np: number of boundary points of a shape;

— N¢: number of FD coefficients used in shape reconstruction;

— V;: the ith vertex of a polygon;

— Nygense: number of dense samples used in resampling in the MFD method;
— Nuynig: number of uniformly spaced samples used in MFD method;

— «, 3,7: planar curves (shape boundaries).

2 Fourier Descriptors

There are two commonly known FD’s, described in [13] and [14], which we denote
as “FD1” and “FD2”, respectively. FD1 has low efficiency in reconstructing the
shape, so we discuss FD2 only.

Let v be a clockwise-oriented simple closed planar curve with representation
z(l) = [z(1),y(1)], where ! is the arc length along . A point moving along the
boundary generates the complex function u(l) = z(l) + jy(l). FD2 is defined as:
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The distance metric is defined as the Euclidean distance in FD coefficient
space. Let {a,} and {b,} denote the FD’s of two curves a and (3, respectively,
and assume only N¢ harmonics are used; the distance metric

N¢

d(a,B) = Z lan — bnl? (2)

n=—N¢

Now assume [ is identical to a except for a translation, scale, and rotation, and
that the curve is defined using a different starting point. Ideally, the distance be-
tween the two shapes should be zero. Translation is easily dealt with by omitting
ag and by when taking the sum in (2).

However, to account for the effects of scale (s), rotation (¢), and starting
point (p), we must minimize the distance metric
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over the parameters (s, ¢, p). This is a computationally expensive optimization
problem and makes FD2 impractical for shape matching in a real-time CBR
system, especially when the image database is large. Similarly, TAM has the
same disadvantage.



3 Proposed Method — A Modified Fourier Descriptor

A point moving along the shape boundary generates a complex sequence (4-
neighbor chain code):

z(n) =x(n) + jy(n), n=0,.,Ng—1 (4)

where z(n) and y(n) are the z and y coordinates of the nth boundary points.
The MFD is defined as the Discrete Fourier Transform (DFT) of z(n):
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n=0

where £k =0,...,Ng — 1.

Next, we examine the properties of MFD and propose a distance measure
which is both reliable and easy to compute.

Let z'(n) be a boundary sequence obtained from z(n): z'(n) is z(n) translated
by z, rotated by ¢, and scaled by «, with the starting point shifted by I. We
know that Z(k), for k # 0, is invariant to translation. Next, we examine rotation,
scale, and starting point.

Explicitly, z'(n) is related to z(n) by

Z'(n) = az(n —1)el? (6)
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where 6y and 6], are the orientations of the major axes of the two shapes, defined
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where ¢m;; is the (i,7)"™" central moment of the shape.
The magnitude and phase angle of FD coefficients of z'(n) are related to
those of z(n) in the way specified in (9) and (10). Based on these relations, we

construct two sequences

ratio(k) = ]]\\4/11((:)), (13)
shift(k) = 6(k) - i(k) T ¢, (14)
k=—Nc,..,Nc,k #0. (15)

It is easy to see that if z’(n) is indeed a transformed version of z(n), then the
two sequences above (egs. (13)(14)) would both be constant in k. Specifically,
ratio(k) = « and shift(k) = 0 for all k. On the other hand, if 2'(n) is com-
pletely different from z(n), then ratio and shift will both have high variance
with respect to the frequency index k. Based on this observation, the standard
deviation is a good measure of the difference between two shapes. The distance
measure for magnitude (D,,) and phase angle (D,) are defined as

D,,, = o[ratio]
D, = o[shift] (16)

where o denotes standard deviation.
The overall distance measure is defined as the weighted sum of D,, and D,:

DiStMFD = mem + ’lUpr (17)

where w,, and w,, are weighting constants. Empirically, we find that w,, = 0.9
and w, = 0.1 gives good results for most of the images we tested.

Note that the proposed distance measure is invariant to translation, rotation,
scale, and starting point, making it suitable for on-line matching in a CBR
system.

4 Comparisons with the Existing Methods

We compare the MFD with FD1 and FD2 in terms of both computational com-
plexity and practical robustness.

4.1 Computational Complexity

We mentioned in section 1 that a good shape representation method in the CBR
system should be efficient in both feature extraction and feature matching, with



much more emphasis on the latter. This is obvious since a CBR system typically
does matching on-line, and may support multiple user queries simultaneously.

Tables 1 and 2 show the computation operation counts for MFD, FD1, and
FD2 in feature extraction and feature matching, respectively. A subtract is
counted as an add; a divide is counted as a multiply; absolute value is counted as
2 adds; math library functions (e.g., exponential, sine, square root) are counted
as 16 multiplies.

We can see that although MFD requires a little bit more computation during
feature extraction, it is much faster during feature matching. This is because the
MFD distance measure is intrinsically invariant to translation, rotation, scale,
and starting point. This is a very important advantage for the MFD since feature
extraction is done off-line while matching is done on-line.

Table 1. Operation counts for feature extraction
FD1 | FD2 MFD

Adds |[O(ND)|O(N)|O(Ng log, NB)
MllltS O(Nv) O(Nv) O(NB 10g2 NB)

Table 2. Operation counts for feature matching
FD1 FD2 | MFD
Adds|O(Nc?®)|Huge™|O(Ne)
Mults|O(Nc?®)|Huge*|O(Nc)

Huge™: beyond comparison since it requires finding all zeros
of a trigonometric polynomial of degree N..

4.2 Robustness: Practice and Theory

Regardless of the different computational costs, FD1, FD2 and MFD are all
valid shape representations, at least theoretically. But to be of practical use, a
representation must be tested using the following procedure:

1. Use a camera to take two images of the same physical object, but at different
scales, rotations, and translations.

2. Segment the two input images to obtain two shape boundaries, with arbitrary
starting point.

3. Compare the features obtained from the each image.
4. If the match is good, conclude that the method is valid.

Note that the segmentation occurs after the transformation. This is the ac-
tual situation when comparing shapes from two different images. If we use this
testing procedure, none of the existing methods give good results, including our
proposed MFD method. This is because the boundaries used in these meth-
ods are sensitive to discretization noise. The discretization noise in many cases
changes the boundary enough such that the Fourier coefficients become signifi-
cantly different. Both FD1 and FD2 suffer from this problem.



The boundary extraction method of FD1 (described in [15]) is sensitive to
noise. If we rotate the input image, both the number of vertices and the lengths
between vertices will change. No boundary extraction method was mentioned
in FD2. However, since FD1 was cited as a main reference in FD2, it most
likely used the same boundary extraction method, thus, suffering from the same
problem.

Since MFD uses the 4-neighbor chain code, it also suffers from discretization
noise. A simple example illustrates this point (see Figure 1). We discretize the
triangle using two different orientations. Note that the upper figure has staircase
effect in edge ¢ while the lower figure has staircase effect in edges a and b. The
Fourier transform magnitudes, as well as ratio(k) (defined in section 3) are shown
in Figure 2. Note that the plot of ratio(k) shows a large variance, even though
the DFT coefficients were obtained from the same object.

o

Cc

Fig. 1. Effect of spatial discretization on the chain code.

Fig. 2. (a) DFT magnitude of the upper triangle in Fig. 1; (b) DFT magnitude of the
lower triangle in Fig. 1; (c) ratio(k) vs. k.

We want to solve this spatial discretization problem while keeping the invari-
ance properties of the MFD; we propose the following procedure:



1. Compute the DFT of the shape boundary z(n), Z(k), using (5);

2. Use the low frequency [—N¢,+N¢] coefficients to reconstruct dense but
possibly non-uniform samples zgense(n) of the original boundary:

N¢c
_j2nnk
Zdense(n) = Z Z(k)e TN ) (18)
k=—Nc
n=20,...,Ngense — 1

3. Use interpolation to trace the dense samples zgense(n) and construct uni-
form samples zunif(n), n = 0, ..., Nynif. The uniform samples z,n;f(n) are
uniformly spaced on the boundary in terms of arc length;

4. Compute the DFT of zy,:f(n) to obtain coefficients Zy,;¢(k),k = —Ng¢, ..., Nc.

In Figure 3, we have the two triangles re-sampled using the procedure de-
scribed above. Note that the re-sampled points match more closely to the points
that would have been sampled from the original (continuous) triangle.

(a) (b)

Fig. 3. (a) Uniform samples of the upper triangle in Fig. 1; (b) uniform samples of the
lower triangle in Fig. 1.

5 Experimental Results

We chose to use a set of Roman characters (as opposed to object outlines from
the MARS database) to evaluate the proposed method since Roman characters
are more commonly available. This will allow other researchers to compare their
methods to MFD more easily.

Our test images were created by printing the letters {m, n, u, h, 1, t, {} on a
laser printer and digitizing the printouts using a scanner. Letters were printed
using 256 pt. Helvetica font. To test the robustness of the MFD method, we
intentionally misaligned the letters slightly on the scanner, which introduced
some boundary noise (Figure 4a).

We tested three aspects of our method: 1. its sensitivity to the choice of
parameters Nc, Ngense, and Nypif, 2. its ability to discriminate between shapes,
and 3. its robustness to image transformations.



(a) (b) (c) (d)

Fig. 4. (a) Original image; (b) Extracted boundary; (c) Low frequency reconstruction;
(d) Uniform re-sampling.

Figure 4b shows the boundary extracted from the original image of the letter;
Figure 4c shows the dense samples reconstructed using 40 MFD coefficients
(N¢ = 20); Figure 4d is the set of uniform samples obtained from Figure 4c.

We can see from Figure 4d that using the first 20 frequencies captures most
of information contained in the boundary while reducing segmentation noise.

5.1 Sensitivity to choice of parameters

The letters “n” and “f” are used in the following experiments. “n vs. n” denotes

[}

the distance between “n” and a rotated version of “n”, where the rotation angle
is 27 degrees. “n vs. f” denotes the distance between an upright “n” and an
upright “f”.

1. Sensitivity to N¢

Table 3 shows Distance vs. N¢, where we can see that the MFD is very
robust to N¢o. We have a wide range to choose N¢ from — it can range from 5 to
40 without significantly affecting the matching results for the images we used.

Table 3. Distance vs. N¢
N¢ 10 15 20 | 25 | 30 | 35
n vs. n|0.095{0.090{0.059{0.051{0.051{0.051
n vs. £{1.984(1.806(1.930(1.713(1.907|1.705

2. Sensitivity to Ngense
Ngense is defined as

boundary length
Nstep

Ndense = (19)
where Nyt is the sampling interval. The finer the interval, the larger the number
of dense samples. From Table 4 we see that the distance is almost constant for
a wide range of Nytep.



Table 4. Distance vs. Ngtep
Nstep | 2 4 6 8 10 | 12 | 14
n vs. n{0.059(0.059(0.059(0.059(0.059(0.059{0.060
n vs. £{1.912|1.912|1.913|1.912|1.931|1.932|1.932

3. Sensitivity to Nypif
Nuniy is defined as
Nunis = (2N + Dmulti (20)

where multi makes Nyn;¢ a multiple of the number of total frequencies used.
multi should be at least 1, which corresponds the Nyquist frequency. (see Table
5).

Table 5. Distance vs. mults
multi 1 2 3 4 5 6

n vs. n[0.075|0.059(0.060]0.059{0.059(0.060
n vs. £]1.705/1.912|1.911|1.911|1.911|1.911

5.2 Discriminatory ability

Tables 6-8 show the ability of MFD to discriminate between shapes. Table 6
shows the MFD distances between the shapes of each letter from the original
set. This gives us baseline values on the discriminatory ability of the MFD. The
original set is the set of images obtained using scanner as mentioned earlier. Table

Table 6. Distances between letters — original set.
m n u h 1 t f
m|0.000{1.802|1.809|1.625(0.893|1.802|1.512
n (1.802{0.000|0.075(1.439|1.026|1.729|1.907
u |1.809{0.075|0.000{1.483(0.991|1.747|1.852
h(1.625]1.439|1.483(0.000{1.081|1.583|1.557
1
t
f

0.893(1.026/0.991{1.081{0.000|1.109|1.077
1.802|1.729|1.747(1.583|1.109/0.000(1.260
1.512|1.907|1.852(1.557|1.077|1.260|0.000

7 shows the MFD distances between letters from the original set and a rotated
set. The rotated set was obtained by taking the original set and synthetically
rotating each image by 27 degrees (we avoided multiples of 90 degrees since
they give the exact same results as in Table 6). Rotations were done using the
ImageMagick software package (©1995 E. I. du Pont de Nemours and Company).



Table 7. Distances between original and rotated letters.
m n u h 1 t f
m|0.085(1.815|1.887|1.550|0.889|1.605|1.545
n|1.795(0.079(0.133|1.448|1.035|1.860(1.736
1u|1.805(0.139(0.102(1.492(0.999{1.905|1.735
h|1.619|1.405(1.543|0.068|1.094|1.493|1.603
1
t
f

0.837(1.154|1.034/1.077|0.016|1.109{1.070
1.808|1.757|1.760(1.586|1.112|0.058|1.262
1.512|1.911|1.923|1.571|1.085|1.244|0.040

Table 8 shows the MFD distances between the original set and a scaled set of
images. The scaled set was obtained by scaling the original images by 210%.
Scaling was done using the “xv” program (by John Bradley). As expected, “n”

Table 8. Distances between original and scaled letters.
m n u h 1 t f
m|0.025]1.873|1.848|2.081(1.762|1.674|1.602
n|1.797/0.023|0.083(1.441|2.342|1.847{1.808
1u|1.804/0.080{0.023(1.487|2.374|1.685|1.806
h{1.621|1.324|1.333(0.022|2.017|1.582{1.601
1
t
f

0.895(1.028]0.991|1.080|0.012]1.112{1.088
1.810(1.730(1.745(1.582(1.382|0.025|1.267
1.518(1.911|1.884(1.574(1.232|0.891(0.034

and “u” match quite closely, since they are only rotated versions of each other.
“h” matches “n” and “u” better than the other letters. We see that discretization
(after rotation and scaling) introduces some noise and thus the distances between
the same letters are not exactly zero (Tables 7, 8) as is the case in Table 6. But
the results indicate that the MFD deals with the discretization effects fairly well.
Distances between different letters are always much larger (10 to 100 times) than
those between the same letter.

5.3 Robustness to transformation

— Translation
No discretization noise involved. Zero error.

— Rotation
We plot the distance vs. rotation angle in Figure 5a. The upper curve is
the distance between “f” and rotated versions of “n”. The lower curve is

the distance between “n” and its rotated version. The rotation step is five
degrees.



Note how discretization noise affects the distance (the curves are not exactly
constant, but have small ripples). However, even if the noise changes each
distance a small amount, the overall robustness of the MFD distance is still
very good — the average magnitude of the upper curve is about 20 times that
of the lower curve.

Scale

We plot distance vs. scale factor in Figure 5b. The upper curve is the distance
between “f” and scaled versions of “n” (from 30% to 210%, with a step size
of 30%). The lower curve is the distance between “n” and scaled versions of
“n”. The magnitude difference is also about a factor of 20, indicating that
the MFD is scale invariant.

Starting point
No discretization noise involved. Zero error.

EE % 0 YT RETTRT

Fig.5. “n vs. n” and “n vs. {7 for various (a) rotation angles; (b) scale factors

6

Conclusions

We presented a new method of shape representation and its distance measure.
We compared it with existing FD methods in terms of both computational cost
and practical robustness. The main features of our method are:

1.
2.

The method is in variant to translation, rotation, scale, and starting point.

The method takes into account spatial discretization.

. The computational cost for feature extraction is low, and for feature match-

ing the cost is extremely low, making the method suitable for real-time
multi-user CBR systems.

The representation is able to describe complex shapes while remaining rel-
atively compact, reducing the disk space and memory required in the CBR
system.
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