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ABSTRACT

For a given visual feature, due to the diversity of hu-
man’s subjective judgment, a visual information re-
trieval system that supports a single prefixed similar-
ity measure will result in poor retrieval performance.
To address this problem, this paper proposes the con-
cept of similarity matching toolkit which consists of dif-
ferent similarity measures simulating human’s percep-
tions of the given feature from different aspects. The
toolkit supports a feedback-driven tool selection mecha-
nism which adapts to the similarity measure that best
fits the user’s perception.

To illustrate the advantage of the proposed toolkit
approach, we apply it to shape-based image retrieval.
The paper describes a shape matching toolkit consist-
ing of four transformation-invariant and computation-
ally efficient matching tools and describes how rele-
vance feedback can be used for automatic tool selec-
tion. Experimental results validate the flexibility of
the matching toolkit and show the effectiveness of the
relevance feedback for shape matching tool selection.

1. INTRODUCTION

In the past five years, content-based image retrieval is
becoming a very active research area [1, 2, 3]. However,
in order for this approach to be of practical use, there
are still many research issues need to be solved. One
of such research issues is how to incorporate human
expertise to improve retrieval performance, as human
is already a part of the retrieval process.

For any low-level visual feature, such as color, tex-
ture, or shape, there exist dozens of similarity mea-
sures. None of them has been agreed on best simulating
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user’s perception of the feature, since different persons,
or even the same person under different circumstances,
may have different perception criteria. Therefore, a ro-
bust Visual Information Retrieval (VIR) system must
be capable of supporting multiple similarity measures
to flexibly support different perception criteria of dif-
ferent users, rather than prefixing a single similarity
measure at the system design stage.

The similarity measures are referred as matching
tools in this paper and they together define a matching
toolkit for a particular feature. While it is relatively
easy for a user to specify which visual features he is
interested in, it is difficult for him to specify which
matching tool best fits his perception criterion. This
requires the user to have enough knowledge of the prop-
erties of the matching tools, which is normally not the
case. This difficulty is bypassed by most existing sys-
tems by prefixing the similarity measure at the system
design stage at the cost of potentially poor retrieval
performance.

In MARS !, the technique of relevance feedback is
proposed towards solving this difficulty. Specifically,
for a given feature that the user is interested in, the
best matching tool will be determined via relevance
feedback. The user is not required to have any knowl-
edge of the properties of the matching tools. He or she
only needs to rank the retrieval returns according to his
own perception criterion and feedbacks the ranks to the
VIR system. From the user’s feedback, the VIR system
will automatically identify the matching tool that best
fits this particular user’s perception criterion.

While the proposed approach is valid for automat-
ically identifying the matching tool of any visual fea-
ture, shape feature is chosen to illustrate how relevance
feedback is used for automatic matching tool selection.

IMARS is the Multimedia Analysis and Retrieval System be-
ing built at University of Illinois at Urbana-Champaign.



Among the low level visual features, shape is the
most challenging and has been implemented in only
a few systems([3, 2]. An efficient shape feature model
(both representation and matching tool) in a VIR, sys-
tem must demonstrate:

e Invariance to transformation: The model should
be invariant to geometric transformations, such
as translation, rotation, and scaling, to be a valid
shape model.

o Compact representation and fast matching speed:
The number of objects stored in a VIR system
is normally very large. It is highly desirable to
have a compact representation to minimize the
storage overhead and have a fast matching tool
to minimize the retrieval time.

A Fourier Descriptor (FD) representation and four
matching tools are proposed to construct the shape
matching toolkit.

This paper will focus on two main aspects, i.e. shape
matching toolkit construction and automatic tool selec-
tion via relevance feedback. The rest of paper is devel-
oped as follows. FD based shape representation is dis-

cussed in Section 2. Section 3 describes four transformation-

invariant and fast speed matching tools. The process
of automatic tool selection via relevance feedback is
discussed in Section 4. Experimental results and con-
clusions are given in Sections 5 and 6 respectively.

2. FD SHAPE REPRESENTATION

Shape representation specifies how the outer bound-
ary of a shape is represented by a set of parameters.
We choose the Fourier Descriptor (FD) [4, 5, 6] as our
shape representation, since it meets both the require-
ments discussed in Section 1.

A point moving along the shape boundary generates
a complex sequence

z(n) =x(n) + jy(n), n=0,..,Ng—1 (1)

where z(n) and y(n) are the z and y coordinates of the

nth boundary points, and Np the number of boundary

points of the shape. The FD shape representation is

defined as the Discrete Fourier Transform (DFT) of
Np—1 .

Z(k)= > zn)e”? e =Mk (2

n=0

where k = 0,..., Ng — 1; M(k) is the magnitude and
0(k) the phase angle.

Mathematically, z(n)’s are floating-point values and
can be sampled dense enough to form a continuous
boundary (see the left two triangles in Figure 1). We

can derive nice transformation-invariant similarity mea-
sures based on the mathematical boundary[4, 5]. In
practice, however, the continuous boundary is discretized
in the image domain and the discretization noise causes
the staircase effect (see the right two triangles in Fig-
ure 1). In Figure 1, although the right two triangles are
obtained from the same mathematical triangle (with a
45° rotation), the FD representations of the upper and
lower discritized triangles differ considerably[6]. The
transformation-invariant similarity measures based on
mathematical boundaries will no longer be invariant to
the discretized boundaries.

Figure 1: Different discretization of the same triangle

To overcome this difficulty, a much more robust FD
representation was developed in our previous research
[6]:

1. Compute the DFT of the shape boundary z(n),

Z(k), using Equation 2;

2. Use the low frequency [—N¢,+N¢]| coefficients,
where N¢ represents the number of the FD co-
efficients, to reconstruct dense but possibly non-
uniform samples zgense(n) of the original bound-

ary:
NC 2 k
Zaense(n) =Y Z(k)e I s (3)
=—N¢
n = 0;---;Ndense_]-

where Ngense i the number of dense samples.

3. Use interpolation to trace the dense samples zgepse (1)
and construct uniform samples zypir(n), n = 0,
-oey Nunif, where Nyy;r is the number of uniform
samples. The uniform samples zynif(n) are uni-
formly spaced on the boundary in terms of arc
length;

4. Compute the length of the boundary [, by sum-
ming over all the arc lengths.

5. Normalize the samples zypir(n) to unit-length

samples z,,;+(n)

Zunif (1) = Zunif(n) /1y (4)



6. Compute the DFT of z,,;.(n) to obtain coeffi-

cients Zynif(k),k = —N¢, ..., Nc.

Zunif(k)’s are the final representation of a shape
and is stored in the database. Step 2 cuts off the high
frequency components, which reduces the noise corrup-
tion. Step 3 forms uniform samples, which minimizes
the staircase effect. Besides smoothing out the stair-
case effect, the above procedure (Steps 4 and 5) ensures
all the shape boundaries are of the same scale (length);
thus making the representation invariant to scaling.

Besides the FD coeflicients, the major axis orien-
tation ¢ is also calculated and stored in the database,
which will be used in constructing rotation-invariant
matching tools. The orientation of the major axis ¢ is
defined as:

b= 1t <ﬂ) (5)

2 CImnag — CIMp2
where ¢m;; is the (i,7)*™® central moment of the shape.

To summarize, the FD shape representation dis-
cussed above has the following properties:

e Compactness in representation: Instead of stor-
ing the whole boundary sequence z(n), only the
low frequency FD coefficients and major axis ori-
entation ¢ are stored in the database.

e Invariance to scaling: Steps 4 and 5 normalize
the shape boundary to a unit-length boundary,
which ensures the representation is invariant to
scaling. For the matching tools discussed in the
next section, only the invariance to translation
and rotation needs to be considered.

3. SHAPE SIMILARITY MATCHING
TOOLKIT

The FD shape representation described in the previous
section has achieved part of the two requirements dis-
cussed in Section 1, i.e. compactness of representation
and invariance to scaling. The rest of the two require-
ments, i.e. invariance to translation and rotation and
fast matching speed will be achieved by the matching
tools defined over the FD representation.

In the reminder of the section, we will describe
four matching tools that have been implemented in
the shape matching toolkit, i.e. Euclidean, Modified
Fourier Descriptor (MFD), Chamfer, and Hausdorff.
The first two tools are frequency domain tools and the
last two are spatial domain tools.

3.1. Euclidean Matching Tool

Based on the data stored in the database, a natural
way to compute the similarity between two boundaries

z1(n) and z2(n) is to compute the (weighted) Euclidean
distance in the FD coefficient space:
1. Compute the major axes difference between the
two shapes
R R L

2. Rotate z2(n) such that its major axis aligns with
z1(n)’s major axis. This can be achieved easily
in the FD coefficient space by rotating the phase
angles of Zy(k) by 9:

Zh(k) = MZ(k)ej(Hz(k)*l/i)

3. Compute the Euclidean distance in the FD coef-
ficient space:

Ne

Distguctidean = §
k=—No,k£0

wi(Z1(k) — Zb(k))?

(6)
where wy, is the weight for the kth FD coeffi-
cient, which is normally inverse proportional to
the frequency index to emphasize the low fre-
quency components.

Steps 1 and 2 above ensure that Distguciidean 1S
invariant to rotation. The condition k& # 0 in Step 3
ensures Distguclidean 1S invariant to translation.

3.2. MFD Matching Tool

Based on the same FD shape representation, in the
same frequency domain, the MFD matching tool per-
ceives the similarity between shapes in a different way|[6].

Let z2(n) be a boundary sequence obtained from
z1(n): z2(n) is z1(n) translated by z:, rotated by 1,
and scaled by «. Explicitly, z2(n) is related to z1(n)

by 23(n) = azi(n)el? (7)

The corresponding DFT of z2(n) is
Np—1

Zo(k) = Y zm(n)e TN (8)
n_.o NB_l 2ntnk
= ae¥ Z z1(n)e”’ Vs (9)
n=0
= My(k)es?2(®) (10)
where
My(k) = aM,(k), (11)
O2(k) = 0u(k)+¢ (12)

The magnitude and phase angle of FD coefficients of
z2(n) are related to those of z1(n) in the way specified



in Equations 11 and 12. Based on these relations, we
construct two sequences

ratio(k) = %jé’;; (13)
Shiftk) = Balk) - B2(k) — (14)
k = —Ney.,No, k#0

It is easy to see that if z5(n) is indeed a transformed
version of z;(n), then the above two sequences would
be two constant sequences. Specifically, ratio sequence
will consist of all a’s and shift sequence will consist
of all 0’s. On the other hand, if z5(n) is very different
from z;(n), the two sequences will have high variances.
Based on this intuition, the standard deviation is a
good measure of the similarity. The similarities for
magnitude (D,,) and phase angle (D)) are defined as

D,, = olratio
D, o[shift] (15)

where o denotes standard deviation.
The overall similarity distance is defined as the weighted
sum of D, and D,:

Distyrp = WDy +wpDy (16)

where w,,, and w,, are weighting constants. Empirically,
we find that w,, = 0.9 and w, = 0.1 gives good results
to most of the images.

The condition k£ # 0 in Equations 13 and 14 ensures
the matching tool is invariant to translation. Further-
more, Equation 14 takes the major axis orientation into
account and makes the matching tool invariant to ro-
tation.

3.3. Chamfer Matching Tool

Chamfer matching tool is a spatial domain similar-
ity measure. The original Chamfer algorithm is not
invariant to transformations; thus requires intensive
computation[7]. A transformation-invariant Chamfer
algorithm is proposed in this paper based on the FD
representation, which will be discussed in Section 3.3.2.

3.8.1. The original Chamfer algorithm

For the two images that are to be matched, one is called
pre-distance image and the other called pre-polygon im-
age. A distance image and a polygon image are then
constructed from the corresponding pre-distance and
pre-polygon images, before the matching is performed.
For most applications, the choice for the pre-distance or
pre-polygon image is arbitrary. However, the complex-
ity for constructing distance image is much higher than
that for polygon image. Therefore, if the matching

speed is a major consideration, the to-be-matched im-
age should be chosen as the pre-distance image, and the
matching images be chosen as the pre-polygon images.
In our image database application, it is obvious that
the query image should be chosen as the pre-distance
image.

In the pre-distance image, each non-boundary pixel
is given a value that is a measure of the distance to the
nearest boundary pixel. The boundary pixels get the
value zero. To compensate different distance values of
horizontal (vertical) neighbors and diagonal neighbors,
3 is used as the distance for the former and 4 the latter.

Following the algorithm described in [7], the dis-
tance image is constructed from the pre-distance im-
age, as shown in Figure 2. In the distance image, the
darker the pixel’s intensity is, the closer it is to the
boundary.

]

(a) (b)

Figure 2: (a) The pre-distance image; (b) The distance
image.

The edge image corresponding to the pre-polygon
image is called the polygon image. In our case, the
original pre-polygon image is already a edge (bound-
ary) image. The polygon image is just the pre-polygon
image itself. When we match the two boundaries, the
polygon image is superimposed on the distance image.
An average of the distance image pixel values that are
hit by the boundary pixels in the polygon image is the
Chamfer distance:

1|1 &
Distchamfer = = > v (17)

3\| Np —
where V,, is the distance value hit by boundary pixel
z2(n), and Np the number of boundary pixels in the
polygon image.

If the pre-distance image and the pre-polygon im-
age are arbitrary images containing boundaries of any
scale and orientation, multiple rounds of matching need
to be performed. To find the real similarity value be-
tween two boundaries, the polygon image has to be



moved over the distance image at different scales and
orientations.

3.8.2. A fast and transformation-invariant Cham-
fer algorithm

The Chamfer algorithm described in Section 3.1.1 is
not invariant to transformation. Although a hierarchi-
cal matching algorithm (HMA) was proposed[7], the

matching speed is still far from tolerable in image database

application.

Based on the FD representation and the availability
of major axis orientation ¢, a much better approach is
to normalize the boundaries before the Chamfer algo-
rithm is applied. The normalizing and matching pro-
cedure is summarized as:

1. Reconstruct the query image’s shape boundary

z1(n) from the FD coeflicients stored in the database.

z1(n) = IDFT (M, (k)e? D)) k20 (18)
where IDF'T denotes the inverse DFT.

2. Reconstruct a rotated version of shape boundary,
zh(n), for each of other images, by using both the
FD coefficients and the major axis orientation ¢.

20 (n) = IDFT (My(k)e? =R =¥)) = | £0 (19)

where ¢ = ¢1 — ¢o.

3. Construct the distance image from z; (n) (see Fig-
ure 2). The polygon images are the same as the
pre-polygon images, i.e. z5(n)’s.

4. Superimpose the polygon images on the distance

image and compute the distance by using Equa-
tion 17.

The condition k£ # 0 in steps 1 and 2 ensures the
centroids of the boundaries in both distance and poly-
gon images are at the origin; thus is invariant to trans-
lation. In step 2, the polygon image’s major axis is
aligned with the distance image’s major axis; thus the
similarity measure is invariant to rotation.

Before the matching is applied, the distance and
polygon images are normalized. When they are su-
perimposed, their centroids coincide, and orientations
are aligned. Only one round of Equation 17 is needed.
No moving-around is necessary, and the matching is
done in one scaling and one orientation. This proposed
Chamfer matching algorithm is much faster than the
original algorithm.

3.4. Hausdorff Matching Tool

Hausdorff matching tool is a spatial domain measure
and finds many applications in Fractals[8]. Define A

and B are the two boundaries to be matched. A con-
sists of boundary pixels z; (n)’s and B consists of bound-
ary pixels z2(n)’s. For a pixel on A, i.e. z1(n), the
distance from z;(n) to B is defined as

d(z1(n), B) = min(d(z1(n),z2(n)) : z2(n) € B) (20)

The distance from boundary A to boundary B is
defined as

d(A, B) = Max(d(z1(n),B) : z1(n) € A). (21)

Note that this distance metric is asymmetric. To
make it symmetric, the final Hausdorff distance be-
tween boundaries A and B is defined as

DiStHausdorf = Max(d(A, B): d(Ba A)) (22)

The algorithm for computing the Chamfer distance
can be easily adapted to compute the Hausdorff dis-
tance, except that we now need to compute two dis-
tances d(A4, B) and d(B, A). When we compute d(A, B)
we use A as the distance image and B as the polygon
image. When we compute d(B, A), we switch the role
of A and B. The distance from A to B is defined as

d(A,B) = %4 /IIITEL},XV;.% (23)

Comparing the two spatial matching tools, i.e. Cham-
fer and Hausdorff, Chamfer is a norm-2 distance, which
gives a balanced consideration among all the boundary
pixels. Hausdorff is a norm-oco distance, which penal-
izes the similarity more than Chamfer does, if only a
few boundary pixels do not match well. This is illus-
trated in Figure 3. Chamfer will give the two bound-
aries high similarity while Hausdorff will penalize the
upper-left bump on the second boundary by giving a
relatively low similarity.

ONe

Figure 3: Norm-2 vs Norm-oo

4. AUTOMATIC TOOL SELECTION VIA
RELEVANCE FEEDBACK

As described in the previous section, there are many
matching tools for shape comparison; each of which
try to simulate human’s perception from a particular
aspect. For example, we can make the following ob-
servations about the four matching tools described in
Section 3:



e Euclidean and MFD simulate the human’s per-
ception from frequency domain, while Chamfer
and Hausdorff simulate the human’s perception
from spatial domain.

e In the frequency domain, low frequency compo-
nents give a rough general description of the bound-
ary, while high frequency components give a de-
tailed, but possibly noisy, description of the bound-
ary. Euclidean is a norm-2 distance, which gives a
balanced consideration among different frequency
components. MFD is a standard deviation based
distance, which penalizes the similarity more than
Euclidean does, if only a single component does
not match.

e In the spatial domain, Chamfer is a norm-2 dis-
tance, which gives a balanced consideration among
all the boundary pixels. Hausdorff is a norm-
oo distance, which penalizes the similarity more
than Chamfer does, if only a few boundary pixels
do not match well.

While the shape matching toolkit supports different
tools which simulate human’s perception from different
aspects, a user needs to specify which tool best matches
his perception before the retrieval can proceed. The
technique of relevance feedback is proposed such that
the user is exempt from specifying the matching tool.
That is, the user is not required to have any knowledge
of the properties of the matching tools. He or she only
needs to rank the retrieval returns according to his own
perception criterion and feedbacks the ranks to the VIR,
system. From the user’s feedback, the VIR system will
automatically identify the matching tool that best fits
this particular user’s perception criterion.

In the TIR literature it has been well established
that retrieval performance can be significantly improved
by incorporating the user as part of the retrieval loop[9].
Relevance feedback is the mechanism supported by the
TIR systems to enable users to guide the computer’s
search for relevant documents. In TIR domain, this
technique has been extensively studied and used in the
vector-based retrieval model to adjust the term (key-
word) weights to improve the retrieval performance[9].

Our previous work has generalized this technique of
automatic query weights adjustment to content-based
image retrieval[10]. In this section we describe how
the relevance feedback can also be used for automatic
tool selection. Since this relevance feedback procedure
is valid for any visual feature, we will describe it in a
general setting. The application of it in shape feature
will be discussed in Section 5.

To simplify the notations, define P to be the match-

ing toolkit consisting of T matching tools, p1, ..., pt, ..., P1-

For a given visual feature, a set of useful p,’s are
identified and represented in P. The procedure of au-
tomatic p; selection is summarized as follows:

1. The user specifies how many retrieval returns he

wants to have. Let this number be N,.

2. For an arbitrary given query, for each image I,
in the collection, n = 1,..., N., where N, is the
number of images in the collection, compute the
similarity distance disty, ; for each p; in P.

3. For each p;, based on disty, ;’s, sort the image
id’s and construct a length-aN, rank list [;:

le =1ty s Ity ooy Lan, 1] (24)

where a is a small positive integer greater than
one, and I, ; is the image id for the mth most
similar image to the query image when p; is used.
The reason we maintain a length-aV,., not a length-
N,., rank list, is that these rank list /;’s are in-
termediate entities, a longer rank list will ensure
better final precision. Experimentally we find
that a = 2 gives good final precision and has fast
enough computation speed. Therefore, in the re-
maining of the procedure o« = 2 is used.

4. Define a rank-of operator RAN K¢(1,,), which finds
the rank of image I,,, when p; is used:

RANK(I,) = rank of I, inl;, (25)
ifI, €1 (26)
RANK(I,) = 2N,+1, (27)
ifI, ¢ 1y (28)

In Equations (8)-(11), for simplicity, we assign
the same rank 2NV, + 1 to all the images who are
not in ly.

5. For each image, compute the overall rank rankAll;,, .
Since only N, images, where IV, is normally a
small number, need to be returned to the user,
there is no need to compute the overall rank for
all the images in the database. To achieve fast
retrieval speed, only the rankAllr,’s of the im-
ages appearing in some [;’s are computed. This
approach results in a significant improvement in
retrieval speed, while causing almost no retrieval
miss. T

rankAll;, = RANK(I,) (29)

t=1
where T is the number of elements in P, and I,
appears in at least one of I;’s.

6. Based on rankAllz,’s, construct a length- N, com-
bined rank list {., which contains the overall most
similar N, images to the query image:

le=Thc, - Ime, - In,.cl (30)



and send the retrieved image I,,, .’s to the user in
the order specified in [.;

7. The ranks for the retrieved images in [, might not
be the same as the user’s perception and the user
sends back a modified feedback rank list [;:

ly=1[Litsee Imfyoos IN, 1] (31)

8. For each l;, compute the rank difference rd;

Ny
rdy = Y abs(RANK (I f) — RANK (I 5))
m=1
(32)
where abs denotes taking absolute value.
9. Return to the user the best p«:
t* = arg min(rdy) (33)

where arg denotes the index-selecting operator.

Usually this feedback procedure needs to be done
only once and the subsequent retrieval is based on p«
just identified. Here, we assume a user’s perception cri-
terion stays relatively stable during the query process,
which is normally a short period. If a user does find his
perception is changing, a new round of feedback can be
performed.

An alternative to the above standard procedure is
to use multiple p;’s with different weights. Instead of
selecting the best p; with the minimum rank difference,
we can use the inverse rank difference as the weight for
each p;. By incorporating multiple p;’s, although the
retrieval speed is not as good as the above procedure,
the retrieval precision is normally higher.

In both the standard and alternative relevance feed-
back procedure, the user is not required to have any
knowledge of the characteristics of the perception cri-
teria py’s. He or she only needs to rank the retrieval
returns according to his own judgment, and feedback
the ranks to the VIR system. The good perception
criteria p;’s will be automatically determined by the
system based on the user’s feedback.

5. EXPERIMENTAL RESULTS

To address the challenging issues involved in VIR, a
Multimedia Analysis and Retrieval System (MARS)
project was started at University of Illinois[3, 6, 10,
11, 12]. MARS-1 is accessible via internet at http://
jadzia.ifp.uiuc.edu:8000. The relevance feedback pro-
cedure discussed in Section 4 has been implemented in
a shape-based image retrieval subsystem in MARS-2.

The subsystem is accessible via internet at http://quark.

ifp.uiuc.edu:8080.

As part of the DLI content-based retrieval test bed,
there are about 300 images in the database, which
are a collection of ancient African artifacts from the
Getty Museum. For the experiments, users from var-
ious domains, including users from Computer Vision,
Art, Computer Science, and non-technical users, are
asked to submit queries and feedback their ranks to the
VIR system. Extensive experiments were performed
and we have the following observations:

1. Different users, or even the same user under dif-
ferent circumstances, have different judgment for
the similarities, which justifies the need of the
matching toolkit and relevance feedback process.

2. All of the 4 matching tools have been selected as
the best tools for some users, according to user’s
feedback.

3. If a user emphases the rough general aspect of
the shape boundary, Chamfer and Euclidean are
more likely to be chosen as his best tool. If a
user emphases the detailed aspect of the shape
boundary, Hausdorff and MFD are often chosen
as his best tool. This fact matches well with the
mathematical definitions of the 4 matching tools.

An example feedback process is illustrated in Fig-
ures 4 and 5. In Figure 4, the upper-left image is the
query image. After the query is submitted, the com-
bined rank list /. is constructed, as described in Section
4. Retrieved images are then returned to the user in the
order specified in /.. The numbers in the input areas in
Figure 4 are the combined ranks for the corresponding
images.

The following is the retrieved result.

The numbers in theinput areas are the ranks for the corresponding images.

Please modify the ranks, if you are not satisfied and I will guess your
intention from the ranks. Good luck ...

Figure 4: Relevance feedback process (a)



If the user is not satisfied with the rank order, he
can modify the rank order according to his own judg-
ment. For example, the user does not like images 36,
125, 216, and 234, which are ranked by the VIR system
as 4, 6,9, and 11 respectively (see Figure 4). The user
modifies their ranks to, for example, 12, 14, 15, and 16
respectively and feedbacks the modified ranks to the
system. Based on the user’s feedback rank list 7, the
system determines that the best matching tool for this
user is Chamfer.

Using Chamfer as the matching tool, the new re-
trieval results are in Figure 5. As expected, the images
that the user does not like are no long in the figure;
and Chamfer matches the user’s perception criterion.

Figure 5: Relevance feedback process (c)

Via the relevance feedback process, the VIR system
is capable of flexibly supporting different judgment cri-
teria of different users and thus better meet the user’s
information need.

6. CONCLUSIONS

For a given visual feature, due to the diversity of hu-
man’s subjective judgment, a visual information re-
trieval system that supports a single prefixed similarity
measure will result in poor retrieval performance. To
address this problem, this paper proposed the concept
of similarity matching toolkit which consists of different
similarity measures simulating human’s perceptions of
the given feature from different aspects, and the con-
cept of feedback-driven tool selection where the match-
ing tool selection is done automatically by the system
with user’s feedback. The main contributions of this
paper are:

e The concept of similarity matching toolkit to flex-
ibly support different perception criteria of differ-
ent users.

e Development of a shape matching toolkit that
consists of four transformation-invariant and com-
putationally efficient matching tools.

e Development of the feedback-driven tool selection
mechanism that adapts to the similarity measure
that best fits the user’s perception of a given fea-
ture.

Experimental results validated the flexibility of the match-

ing toolkit and showed the effectiveness of relevance
feedback.
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